• Title/Summary/Keyword: Pd stacked structure

Search Result 8, Processing Time 0.019 seconds

Reduction of Barrier Height between Ni-silicide and p+ Source/drain for High Performance PMOSFET (고성능 PMOSFET을 위한 Ni-silicide와 p+ Source/drain 사이의 Barrier Height 감소)

  • Kong, Sun-Kyu;Zhang, Ying-Ying;Park, Kee-Young;Li, Shi-Guang;Jung, Soon-Yen;Shin, Hong-Sik;Lee, Ga-Won;Wang, Jin-Suk;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.6
    • /
    • pp.457-461
    • /
    • 2009
  • In this paper, barrier height between Ni-silicide and source/drain is reduced utilizing Pd stacked structure (Pd/Ni/TiN) for high performance PMOSFET. It is shown that the barrier height is decreased by Pd incorporation and is dependent on the Pd thickness. Therefore, Ni-silicide using the Pd stacked structure is promising for high performance nano-cale PMOSFET.

Reduction of Barrier Height between Ni-silicide and p+ source/drain for High Performance PMOSFET (고성능 PMOSFET을 위한 Ni-silicide와 p+ source/drain 사이의 barrier height 감소)

  • Kong, Sun-Kyu;Zhang, Ying-Ying;Park, Kee-Young;Li, Shi-Guang;Zhong, Zhun;Jung, Soon-Yen;Yim, Kyoung-Yean;Lee, Ga-Won;Wang, Jin-Suk;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.157-157
    • /
    • 2008
  • As the minimum feature size of semiconductor devices scales down to nano-scale regime, ultra shallow junction is highly necessary to suppress short channel effect. At the same time, Ni-silicide has attracted a lot of attention because silicide can improve device performance by reducing the parasitic resistance of source/drain region. Recently, further improvement of device performance by reducing silicide to source/drain region or tuning the work function of silicide closer to the band edge has been studied extensively. Rare earth elements, such as Er and Yb, and Pd or Pt elements are interesting for n-type and p-type devices, respectively, because work function of those materials is closer to the conduction and valance band, respectively. In this paper, we increased the work function between Ni-silicide and source/drain by using Pd stacked structure (Pd/Ni/TiN) for high performance PMOSFET. We demonstrated that it is possible to control the barrier height of Ni-silicide by adjusting the thickness of Pd layer. Therefore, the Ni-silicide using the Pd stacked structure could be applied for high performance PMOSFET.

  • PDF

Thermal Stable Ni-silicide Utilizing Pd Stacked Layer for nano-scale CMOSFETs (나노급 CMOSFET을 위한 Pd 적층구조를 갖는 열안정 높은 Ni-silicide)

  • Yu, Ji-Won;Zhang, Ying-Ying;Park, Kee-Young;Li, Shi-Guang;Zhong, Zhun;Jung, Soon-Yen;Yim, Kyoung-Yean;Lee, Ga-Won;Wang, Jin-Suk;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.10-10
    • /
    • 2008
  • Silicide is inevitable for CMOSFETs to reduce RC delay by reducing the sheet resistance of gate and source/drain regions. Ni-silicide is a promising material which can be used for the 65nm CMOS technologies. Ni-silicide was proposed in order to make up for the weak points of Co-silicide and Ti-silicide, such as the high consumption of silicon and the line width limitation. Low resistivity NiSi can be formed at low temperature ($\sim500^{\circ}C$) with only one-step heat treat. Ni silicide also has less dependence of sheet resistance on line width and less consumption of silicon because of low resistivity NiSi phase. However, the low thermal stability of the Ni-silicide is a major problem for the post process implementation, such as metalization or ILD(inter layer dielectric) process, that is, it is crucial to prevent both the agglomeration of mono-silicide and its transformation into $NiSi_2$. To solve the thermal immune problem of Ni-silicide, various studies, such as capping layer and inter layer, have been worked. In this paper, the Ni-silicide utilizing Pd stacked layer (Pd/Ni/TiN) was studied for highly thermal immune nano-scale CMOSFETs technology. The proposed structure was compared with NiITiN structure and showed much better thermal stability than Ni/TiN.

  • PDF

Synthesis and Characterization of Metal (Pt, Pd and Fe)-graphene Composites

  • Chen, Ming-Liang;Park, Chong-Yeon;Choi, Jong-Geun;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.2
    • /
    • pp.147-151
    • /
    • 2011
  • In this study, we prepared graphene by using the modified Hummers-Offeman method and then introduced the metals (Pt, Pd and Fe) for dispersion on the surface of the graphene for synthesis of metal-graphene composites. The characterization of the prepared graphene and metal-graphene composites was performed by X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and transmission electron microscopy (TEM). According to the results, it can be observed that the prepared graphene consists of thin stacked flakes of shapes having a well-defined multilayered structure at the edge. And the metal particles are dispersed uniformly on the surface of the graphene with an average particle size of 20 nm.

The Crystal Structure of Bis(ethylenediamine)palladium(II)-Bis(oxalato)palladate(II) (Bis(ethylenediamine)palladium(II)-Bis(oxalato)palladate(II)의 결정구조)

  • Go, Gi-Yeong;Nam, Gung-Hae;Han, Sang-Gon
    • Korean Journal of Crystallography
    • /
    • v.9 no.1
    • /
    • pp.71-76
    • /
    • 1998
  • Crystal structure of Bis(ethylenediamine)palladium(II)-Bis(oxalato)palladate(II0 has been determined by X-ray crystallography. Crystal data : (Pd(C2H8N2)2.Pd(C2O4)2), Fw=509.04, Monocline, Space Group P21/c (no=14), a=6.959(2), b=13.506(2), c=15.339(2) Å, β=99.94(3), Z=4, V=1420 Å3, Dc=2.380 gcm-3, μ=25.46cm-1, F(000)=992. The intensity data were collected with Mo-Kα radiation (λ=0.7107 Å) on an automatic four-circle diffractometer with a graphite monochromater. The structure was solved by Patterson method and refined by full matrix least-square methods using unit weights. The final R and S values were R=0.021, Rw=0.030, Rall=0.032 abd S=2.1 for 1472 observed reflections. The essentially planar complex anions form diade of interplanar distances of 3.41 Å and their diads are stacked along aaxis with interplanar separation of 3.44 Å.

  • PDF

Vacuum Packaging of MEMS (Microelectromechanical System) Devices using LTCC (Low Temperature Co-fired Ceramic) Technology (LTCC 기술을 이용한 MEMS 소자 진공 패키징)

  • 전종인;최혜정;김광성;이영범;김무영;임채임;황건탁;문제도;최원재
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.1
    • /
    • pp.31-38
    • /
    • 2003
  • In the current electronic technology atmosphere, MEMS (Microelectromechanical System) technology is regarded as one of promising device manufacturing technologies to realize market-demanding device properties. In the packaging of MEMS devices, the packaged structure must maintain hermeticity to protect the devices from a hostile atmosphere during their operations. For such MEMS device vacuum packaging, we introduce the LTCC (Low temperature Cofired Ceramic) packaging technology, in which embedded passive components such as resistors, capacitors and inductors can be realized inside the package. The technology has also the advantages of the shortened length of inner and surface traces, reduced signal delay time due to the multilayer structure and cost reduction by more simplified packaging processes owing to the realization of embedded passives which in turn enhances the electrical performance and increases the reliability of the packages. In this paper, the leakage rate of the LTCC package having several interfaces was measured and the possibility of LTCC technology application to MEMS devices vacuum packaging was investigated and it was verified that improved hermetic sealing can be achieved for various model structures having different types of interfaces (leak rate: stacked via; $4.1{\pm}1.11{\times}10^{-12}$/ Torrl/sec, LTCC/AgPd/solder/Cu-tube; $3.4{\pm}0.33{\times}10^{-12}$/ Torrl/sec). In real application of the LTCC technology, the technology can be successfully applied to the vacuum packaging of the Infrared Sensor Array and the images of light-up lamp through the sensor way in LTCC package structure was presented.

  • PDF

Synthesis and Structure of N-Methylphenazinium-Tetracynnopalladate(II) Hydrate (N-Methylphenazinium-Tetracyanopalladate(II) Hydrate의 합성 및 결정구조 연구)

  • NamGung, Hae;Lee, Hyun-Mi
    • Korean Journal of Crystallography
    • /
    • v.17 no.1
    • /
    • pp.6-9
    • /
    • 2006
  • Crystal structure of Bis(N-Methylphenazinium)-Tetracyanopalladate(II) hydrate has been determined by X-ray crystallography. Crystal data: $(C_{13}H_{11}N_2){_2}[Pd(cn)_4]{\cdot}H_2O$, Monocline, Space group $P2_1/b$(No=14), a=9.783(4), b=10.788(4), c=13.666(4) ${\AA},\;{\beta}=104.59(5),\;Z=2,\;V=1392.9{\AA}{^3},\;Dc=1.476gcm^{-3},\;F(000)=632,\;{\mu}=7.05cm^{-1}$. The structure was solved by Patterson method and refined by full matrix least-square methods using unit weights. The final R and S values were R=0.0257, Rw=0.0732, Rall=0.0283 and S=1.07 for 1930 observed reflections. Both cation and anion complexes are essentially planar and have dihedral angles of $10.16(4)^{\circ}$. The planar complex anions are sandwiched between slightly bent cations. The interplanar separations in one triad and between two triads are 3.419(3) and $3.402(4){\AA}$, respectively. The triads are stacked along b-axis.

The Crystal Structure of Bis(N-Methylphenazinium) Bis(Oxalato)Palladate(Ⅱ) (Bis(N-Methylphenazinium) Bis(Oxalato)Palladate(Ⅱ)의 결정구조)

  • Kim, Se Hwan;NamGung, Hae;Lee, Hyeon Mi
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.11
    • /
    • pp.827-832
    • /
    • 1994
  • The crystal structure of bis(N-methylphenazinium) bis(oxalato)palladate(II) has been determined by X-ray crystallography. Crystal data: ((C_{13}H_{11}N_2)_2[Pd(C_2O_4)_2]) $M_w$ = 672.93, Triclinic, Space Group P1 (No = 2), a = 7.616(8), b = 9.842(3), c = $20.335(7)\AA$, $\alpha$ = 103.53(3), $\beta$ = 90.00(5), $\gamma$ = $112.38(5)^{\circ}$, Z = 2, $V = 1363(2){\AA}^3\;D_c = 1.639\;gcm^{-3},\;{\mu} = 7.3\;cm^{-1},\;F(000) = 680.0$. The intensity data were collected with $Mo-K\alpha$ radiation (${\lambda}$= 0.7107\;\AA)$ on an automatic four-circle diffractometer with a graphite monochromater. The structure was solved by Patterson method and refined by full matrix least-square methods using Killean & Lawrence weights. The final R and S values were $R = 0.069,\;R_w = 0.050,\;R_{all} = 0.069$ and S = 5.45 for 3120 observed reflections. Both cation and anion complexes are essentially planar and have dihedral angles of 6.3(6) and $57.06(6)^{\circ}$ between their planes. The planar complex anions are sandwiched between slightly bent cations. The interplanar separations of two triads are 3.328 and 3.463 $\AA$, respectively. The triads are stacked along b-axis, but their orientations are different based on dihedral angle $59.08(9)^{\circ}$ of two complex anions.

  • PDF