• 제목/요약/키워드: PcoA

Search Result 153, Processing Time 0.029 seconds

A Methodology for the Development of NCO Effectiveness Analysis Model based on the Reference Model (참조모델기반 NCO 효과분석모델 개발방법)

  • Lim, Nam-Kyu;Lee, Tae-Gong;Son, Hyun-Sik;Park, Ji-Hyeon;Kim, Jae-Won
    • Journal of the military operations research society of Korea
    • /
    • v.36 no.3
    • /
    • pp.95-111
    • /
    • 2010
  • The NCO effectiveness analysis related elements and their relationship are more complicated than the PCW. However, Effectiveness analysis models provide single effectiveness element centric effective analysis method so far. Therefore, A model to provide unified view and common language about NCO effectiveness is required. EA use reference model as a common language to control complexity and change. The objective of this study is presenting a methodology to develop NCO effectiveness analysis model based on reference model and implementation model concept. To do this, First, the concept of EA based reference and implementation model is studied, Second, we study related effectiveness analysis method and model component and their relationship identification methodology, third, we propose methodology to develop NCO effectiveness analysis model. Finally, we prove the effectiveness of the methodology using case study.

Microbiome Study of Initial Gut Microbiota from Newborn Infants to Children Reveals that Diet Determines Its Compositional Development

  • Ku, Hye-Jin;Kim, You-Tae;Lee, Ju-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1067-1071
    • /
    • 2020
  • To understand the formation of initial gut microbiota, three initial fecal samples were collected from two groups of two breast milk-fed (BM1) and seven formula milk-fed (FM1) infants, and the compositional changes in gut microbiota were determined using metagenomics. Compositional change analysis during week one showed that Bifidobacterium increased from the first to the third fecal samples in the BM1 group (1.3% to 35.1%), while Klebsiella and Serratia were detected in the third fecal sample of the FM1 group (4.4% and 34.2%, respectively), suggesting the beneficial effect of breast milk intake. To further understand the compositional changes during progression from infancy to childhood (i.e., from three weeks to five years of age), additional fecal samples were collected from four groups of two breast milk-fed infants (BM2), one formula milk-fed toddler (FM2), three weaning food-fed toddlers (WF), and three solid food-fed children (SF). Subsequent compositional change analysis and principal coordinates analysis (PCoA) revealed that the composition of the gut microbiota changed from an infant-like composition to an adult-like one in conjunction with dietary changes. Interestingly, overall gut microbiota composition analyses during the period of progression from infancy to childhood suggested increasing complexity of gut microbiota as well as emergence of a new species of bacteria capable of digesting complex carbohydrates in WF and SF groups, substantiating that diet type is a key factor in determining the composition of gut microbiota. Consequently, this study may be useful as a guide to understanding the development of initial gut microbiota based on diet.

The genetically healthy terrestrial orchid Liparis krameri on southern Korean Peninsula

  • CHUNG, Mi Yoon;CHUNG, Jae Min;SON, Sungwon;MAO, Kangshan;LOPEZ-PUJOL, Jordi;CHUNG, Myong Gi
    • Korean Journal of Plant Taxonomy
    • /
    • v.49 no.4
    • /
    • pp.324-333
    • /
    • 2019
  • Neutral genetic diversity found in plant species usually leaves an indelible footprint of historical events. Korea's main mountain range (referred to as the Baekdudaegan [BDDG]), is known to have served as a glacial refugium primarily for the boreal and temperate flora of northeastern Asia. In addition, life-history traits (life forms, geographic range, and breeding systems) influence the within- and among-population genetic diversity of seed plant species. For example, selfing species harbor significantly less within-population genetic variation than that of predominantly outcrossers. A previous study of two Liparis species (L. makinoana and L. kumokiri) emphasizes the role of the abovementioned factors shaping the levels of genetic diversity. Liparis makinoana, mainly occurring on the BDDG and self-incompatible, harbors high levels of within-population genetic diversity (expected heterozygosity, HeP = 0.319), whereas there is no allozyme variation (HeP = 0.000) in L. kumokiri, which is self-compatible and mainly occurs in lowland hilly areas. To determine if this trend is also found in other congeners, we sampled five populations of L. krameri from the southern part of the Korean Peninsula and investigated the allozyme-based genetic diversity at 15 putative loci. The somewhat intermediate levels of within-population genetic variation (HeP = 0.145) found in L. krameri are most likely due to its occurrence in mountainous areas that, despite being outside of the main ridge of the BDDG, still served as refugia, and a self-incompatible breeding system. Management strategies are suggested for L. krameri and L. makinoana based on the levels and distribution of genetic diversity and inbreeding.

Hydrochemistry and Environmental Isotope Studies of the Deep Groundwater in the Munkyeong Area (문경지역 심부지하수의 수리화학 및 환경동위원소 연구)

  • 고용권;김천수;배대석;이동익
    • Economic and Environmental Geology
    • /
    • v.33 no.6
    • /
    • pp.469-489
    • /
    • 2000
  • The hydrogeochemical and isotopic studies on deep groundwater (below a 550 m depth from the ground surface) in the Munkyeong area, Kyeongbuk province were carried out. Two types of deep groundwater (${CO_2}$-rich groundwater and alkali groundwater) occur together in the Munkywong area. ${CO_2}$-rich groundwater (Ca-${HCO_3}$ type) is characterized by low pH (5.8~6.5) and high TDS (up to 2,682 mg/L.), while alkali groundwater (Na-${HCO_3}$ type) shows a high pH (9.1~10.4) and relatively low TDS (72~116 mg/L). ${CO_2}$-rich water may have evolved by ${CO_2}$ added at depth during groundwater circulation. This process leads to the dissolution of surrounding rocks and Ca, Na, Mg, K and ${HCO_3}$ concentrations are eniched. The low $Pco_2$ ($10^{-6.4}$atm) of alkali groundwaters seems to result from the dissolution of silicate minerals without a supply of ${CO_2}$. The ${\delta}^{18}O$ and ${\delta}^D$values and tritium data indicate that two types of deep groundwater were both derived from pre-thermonuclear meteoric water and have evolved through prolonged water-rock interaction. The carbon isotope data show that dissolved carbon in the ${CO_2}$-rich water was possibly derived from deep-seated ${CO_2}$ gas, although further studies are needed. The ${\delta}^{34}S$ values of dissolved sulfate show that sulfate reduction occurred at great depths. The application of various chemical geothermometers on ${CO_2}$-rich groundwater shows that the calculated deep reservoir temperature is about 130~$l75^{\circ}C$. Based on the geological setting, water chemistry and environmental isotope data, each of the two types of deep groundwater represent distinct hydrologic and hydrogeochemical evolution at depth and their movement is controlled by the local fracture system.

  • PDF

Formation of Vegetation in an Inland Wetland, Minarimot, of Jeju Islands, and its Relationship to Water Environment (제주도 내륙습지 미나리못의 식생 형성과 물환경과의 관계)

  • Kim, Myung-Hyun;Han, Min-Su;Bang, Hea-Son;Jung, Myung-Pyo;Na, Young-Eun
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.4
    • /
    • pp.365-370
    • /
    • 2009
  • The aim of this study was to investigate the vegetation types of Minarimot, in Jeju Islands. The vegetation types were classified by the Z-M school method and cluster analysis. The vegetation in Minarimot was classified into 6 communities and 2 subcommunities: Persicaria thunbergii-Isachne globosa community (vegetation type: A), Scirpus tribangulatus-Eleocharis manillata var. cyclocarpa community (B) (Aneilema keisak subcommunity (B-1) and Caldesia parnassifolia-Potamogeton distinctus subcommunity (B-2)), Eleocharis kuroguwai community (C), Phragmites communis community (D), Scirpus tabernaemontani community(E) and Typha orientalis community (F). These communities were grouped into three main categories according to cluster analysis. The community (A) established at the edge of the wetland which has the driest condition was distinguished as Group I, while the community (B) emerged in the submerged zone was distinguished as Group III. The Group II was designated as the communities (C, D, E, F) between Group I and III, whose communities were occasionally submerged. The result of principal coordinate analysis (PCoA) appeared that the different vegetation established along the wetland were depending on water environment such as water depth and the period submerged.

16S rRNA gene-based sequencing of cucumber (Cucumis sativus L.) microbiota cultivated in South Korea (16S rRNA 유전자 염기서열 분석에 기반한 국내 재배 오이의 상재균총 분석)

  • Seo, Dong Woo;Kim, Seung Min;Lee, Heoun Reoul;Yum, Su-jin;Jeong, Hee Gon
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.3
    • /
    • pp.334-343
    • /
    • 2021
  • Various vegetables, including cucumbers, have a high probability of foodborne illness because they are usually eaten raw. In this study, we analyzed the 16S rRNA gene sequences of the cucumber (Cucumis sativus L.) microbiota. The diversity indices of cucumber cultivated in May were higher than in cucumber cultivated in November. At the phylum level, Proteobacteria, Firmicutes, and Actinobacteria were predominant. The classes generally comprised Gammaproteobacteria, Bacilli, Alphaproteobacteria, and Actinobacteria. At the genus level, the proportions of Aureimonas, Escherichia, and Microbacterium in samples from May were relatively high, whereas Enterococcus, Pseudomonas, and Rhizobium accounted for a higher proportion in samples from November. Moreover, it is noteworthy that potential pathogenic genera such as Acinetobacter, Aerococcus, Aureimonas, Enterobacter, Enterococcus, Escherichia, Pantoea, Pseudomonas, and Staphylococcus were detected. Although further studies on the characteristics of potential pathogens are required, our results can be used to improve the food safety of vegetables.

Comparison of the Kinetic Behaviors of Fe2O3 Spherical Submicron Clusters and Fe2O3 Fine Powder Catalysts for CO Oxidation

  • Yoo, Seung-Gyun;Kim, Jin-Hoon;Kim, Un-Ho;Jung, Jin-Seung;Lee, Sung-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1379-1384
    • /
    • 2014
  • ${\alpha}-Fe_2O_3$ spherical particles having an average diameter of ca. 420 nm and ${\alpha}-Fe_2O_3$ fine particles (< 10 ${\mu}m$ particle size) were prepared to examine as catalysts for CO oxidation. Kinetic studies on the catalytic reactions were performed in a flow reactor using an on-line gas chromatography system operated at 1 atm. The apparent activation energies and the partial orders with respect to CO and $O_2$ were determined from the rates of CO disappearance in the reaction stage showing a constant catalytic activity. In the temperature range of $150-275^{\circ}C$, the apparent activation energies were calculated to be 13.7 kcal/mol on the ${\alpha}-Fe_2O_3$ spherical submicron clusters and 15.0 kcal/mol on the ${\alpha}-Fe_2O_3$ fine powder. The Pco and $Po_2$ dependencies of rate were investigated at various partial pressures of CO and $O_2$ at $250^{\circ}C$. Zero-order kinetics were observed for $O_2$ on both the catalysts, but the reaction order for CO was observed as first-order on the ${\alpha}-Fe_2O_3$ fine powder and 0.75-order on the ${\alpha}-Fe_2O_3$ spherical submicron clusters. The catalytic processes including the inhibition process by $CO_2$ on the ${\alpha}-Fe_2O_3$ spherical submicron powder are discussed according to the kinetic results. The catalysts were characterized using XRD (X-ray powder diffraction), FE-SEM (field emission-scanning electron microscopy), HR-TEM (high resolution-transmission electron microscopy), and $N_2$ sorption measurements.

A Characteristic of Vegetation Distribution in Jangdo Wetland (장도 습지보호지역의 식생 분포 특성)

  • An, Kyung-Whan;Lim, Jeong-Cheol;Lee, Yeoul-Kyung
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.1
    • /
    • pp.63-74
    • /
    • 2015
  • The purpose of this study is to provide the basis information for ecological conservation and restoration of Jangdo wetland conservation area through the survey of vegetation diversity and spatial distribution characteristics. Syntaxonomic account of plant communities were carried out field survey by Z.-M. school method at 14 sites and relationship analysis between plant community and environment variables with Principal Coordinate Analysis (PCoA). Based on the floristic composition, all the plots were classified into xeric and hydric type and arranged in seven plant communities. Spatial distribution of plant communities is determined primarily by the soil moisture condition and amount of organic matter. Hydric vegetation is around 8% ($7,337m^2$) of the protected area and distributed swamp forest of dominating willows under 18 years. Proliferation of willows are recognised extended from edge to centre after in 1990's caused by fallow and control of livestock grazing on wetland. Jangdo wetland will have to readjust the protection boundary because wet meadow zone and swamp forest have been distributed outside the protection area.

The Differences between Luminal Microbiota and Mucosal Microbiota in Mice

  • Wu, Minna;Li, Puze;Li, Jianmin;An, Yunying;Wang, Mingyong;Zhong, Genshen
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.287-295
    • /
    • 2020
  • The differences between luminal microbiota (LM) and mucosal microbiota (MAM) were little known, especially in duodenum. In this study, LM and MAM in colon and duodenum of mice were investigated through 16S rRNA high-throughput sequencing. The lowest bacterial diversity and evenness were observed in duodenal LM (D_LM), followed by duodenal MAM (D_MAM). Meanwhile, the bacterial diversity and evenness were obviously increased in D_MAM than these in D_LM, while no significant difference was observed between colonic MAM (C_MAM) and colonic LM (C_LM). PCoA analysis also showed that bacterial communities of LM and MAM in duodenum were completely separated, while these in colon overlapped partly. The ratio of Firmicutes to Bacteroidetes (F/B) in D_MAM was significantly higher than that in D_LM. Lactobacillus was largely enriched and was the characteristic bacteria in D_LM. The characteristic bacteria in D_MAM were Turicibacter, Parasutterella, Marvinbryantia and Bifidobacterium, while in C_LM they were Ruminiclostridium_6, Ruminiclostridium_9, Ruminococcaceae_UCG_007 and Lachnospiraceae_UCG_010, and in C_MAM they were Lachnospiraceae_NK4A136, Mucispirillum, Alistipes, Ruminiclostridium and Odoribacter. The networks showed that more interactions existed in colonic microbiota (24 nodes and 74 edges) than in duodenal microbiota (17 nodes and 29 edges). The 16S rDNA function prediction results indicated that bigger differences of function exist between LM and MAM in duodenum than these in colon. In conclusion, microbiota from intestinal luminal content and mucosa were different both in colon and in duodenum, and bacteria in colon interacted with each other much more closely than those in duodenum.

Characterization of Vaginal Microbiota Associated with Pregnancy Outcomes of Artificial Insemination in Dairy Cows

  • Chen, Shi-Yi;Deng, Feilong;Zhang, Ming;Jia, Xianbo;Lai, Song-Jia
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.6
    • /
    • pp.804-810
    • /
    • 2020
  • The profitability of the dairy and beef industries is largely affected by the actually achieved reproductive efficiency. Although a large proportion of cows worldwide are bred by artificial insemination (AI) services, many potential factors affecting the outcome of pregnancy by AI remain to be addressed. In the present study, we investigated the vaginal microbiota by high-throughput sequencing of 16S rRNA gene and analyzed their association with differential pregnancy outcomes (i.e., pregnant vs. nonpregnant) of multiple AI services in dairy cows. Sequencing of the V3-V4 region totally produced 512,046 high-quality sequences that were computationally clustered into 2,584 operational taxonomic units (OTUs). All OTUs were taxonomically assigned to 10 bacterial phyla. There were statistically significant differences among the three AI service times (T1, T2 and T3) with respect to the Shannon index and number of observed OTUs (p < 0.05). Bray-Curtis distance-based PCoA analysis also revealed that T2 group could be significantly distinguished from T1 and T3. However, no significant difference between the pregnant and nonpregnant cows was found in confidence regarding both alpha diversity and beta diversity. These results could help us better understand the possible influence of vaginal microbial community on pregnancy outcomes of AI service in cows.