• Title/Summary/Keyword: Pb band

Search Result 84, Processing Time 0.027 seconds

Flexible Cu-In-Se Quantum Dot-Sensitized Solar Cells Based on Nanotube Electrodes (나노튜브 전극을 기반으로 한 플렉서블 양자점 감응 태양전지)

  • Kim, Jae-Yup
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.45-48
    • /
    • 2019
  • Quantum dots (QDs) are an attractive material for application in solar energy conversion devices because of their unique properties including facile band-gap tuning, a high-absorption coefficient, low-cost processing, and the potential multiple exciton generation effect. Recently, highly efficient quantum dot-sensitized solar cells (QDSCs) have been developed based on CdSe, PbS, CdS, and Cu-In-Se QDs. However, for the commercialization and wide application of these QDSCs, replacing the conventional rigid glass substrates with flexible substrates is required. Here, we demonstrate flexible CISe QDSCs based on vertically aligned $TiO_2$ nanotube (NT) electrodes. The highly uniform $TiO_2$ NT electrodes are prepared by two-step anodic oxidation. Using these flexible photoanodes and semi-transparent Pt counter electrodes, we fabricate the QDSCs and examine their photovoltaic properties. In particular, photovoltaic performances are optimized by controlling the nanostructure of $TiO_2$ NT electrodes.

Characterization of Alternaria alternata ${\alpha}-Amylase$ (Alternaria alternata ${\alpha}-Amylase$의 특성에 관한 연구)

  • Chung, Sang-Jin;Hwang, Baik
    • The Korean Journal of Mycology
    • /
    • v.24 no.1 s.76
    • /
    • pp.8-16
    • /
    • 1996
  • The ${\alpha}-amylase$ of Alternaria alternata was purified through ammonium sulfate precipitation, dialysis and Sephadex G-100 column chromatography. One single band was obtained in SDS-polyacrylamide gel electrophoresis. The optimum pH for enzyme activity was 5.0 and the enzyme activity was maintained at $3.6{\sim}7.0$pH range. The optimum temperature for ${\alpha}-amylase$ activity was $40^{\circ}C$ and 71% of the activity was still maintained until 30 min after heating at $80^{\circ}C$. The ${\alpha}-amylase$ was slightly activated by $Mn^{2+},\;Zn^{2+}\;and\;Sn^{2+}$, but inhibited by $Ba^{2+},\;Pb^{2+},\;Co^{2+}\;and\;Ag^{1+}$. The $Hg^{2+}\;and\;Ag^{2+}$ slightly inhibited the activity of the enzyme at concentrations of $10^{-3}\;and\;10^{-4}M$. The Michaelis constant $(K_m)$ to soluble starch was $6.50{\times}10^{-2}M$ and inhibition constant $(K_i)$ by the 1mM EDTA was $8.0{\times}10^{-2}M$. The inhibition of this enzyme by EDTA was competitive one.

  • PDF

Multiphonon relaxation and frequency upconversion of $Er^{3+}$ ions in heavy metal oxide glasses ($Er^{3+}$첨가 중금속 산화물 유리의 다중포논 완화와 주파수 상향 전이 현상)

  • Choi, yong-Gyu;Kim, Kyong-Hon;Heo, Jong
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.4
    • /
    • pp.221-226
    • /
    • 1998
  • Ternary heavy metal oxide glasses in the $PbO-Bi_2O_3-Ga_2O_3$ system doped with $Er_2O_3$ were prepared and their spectroscopic properties, such as radiative transition probability, calculated and measured radiative lifetimes and cross-sections of 1.5 $\mu\textrm{m}$ and 2.7 $\mu\textrm{m}$ emissions were analyzed. Enhanced quantum efficiencies of some electronic transitions were evident mainly because of the low vibrational phonon energy ($~500cm^{-1}$) inherent in the host glasses. This seems to be the main reason for obtaining the 2.7 $\mu\textrm{m}$ luminescence which is normally quenched in the conventional oxide glasses. In addition, green and red fluorescence emissions were observed through the frequency upconversion processes of the 798 nm excitation. Non-radiative transition due to the multiphonon relaxation is a dominant lifetime-shortening mechanism in the 4f-4f transitions in $Er^{3+}$ ion except for the $^4S_{3/2}{\rightarrow}^4I_{15/2}$ transition where a non-radiative transfer to band-gap excitation of the host glasses is dominant. Melting of glasses under an inert gas atmosphere and (or) addition of the typical glass-network former into glasses is necessary in order to enhance the quantum efficiency of the transition.

  • PDF

Quality Characteristics of Pork Skin Collagen with Enzyme Treatments (종류별 효소 처리에 따른 돈피 콜라겐의 품질특성)

  • Jeon, Ki-Hong;Hwang, Yoon-Seon;Kim, Young-Boong;Choi, Yun-Sang;Kim, Byoung-Mok;Kim, Dong-Wook;Jang, Aera;Choi, Jinyoung
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.5
    • /
    • pp.760-766
    • /
    • 2016
  • To increase the collagen recovery rate, bromelain (PB) and a microbial enzyme (PM) were used to treat to pork skin with single agent or combinations. The quality of collagen from the pork skin was evaluated by enzymatic treatments. The highest results for the solid contents and pork skin recovery rate obtained with the microbial-enzyme-bromelain mixtue (PMB) were 13.60% and 18.05% respectively. The result also showed that the color was affected by different types of enzyme treatments. Although PM treatment showed the highest result in the protein content of 251.30 mg/100 g, PMB treatment was the highest in the test of collagen content of 37.73 g/100 g among the treatments. However bands of the pork skin were detected widely at 130 kDa and 170 kDa ranges in SDS-PAGE. The band of PB treatment showed at the range of below 17 kDa, changed into a smaller molecular weight. The collagen content test of the pork skin by the treatments, collagen contents with combination treatment of pork skin with PMB (0.5%) resulted the highest in 43.76 g/100 g. Also the fat content at the above treatment was reduced to 11.12% compared to the other treatments. With these results of this experiment, we conclude that the enzymatic treatments were effective for the processing property of pork skin like enhancing the yield of collagen.

Regulated Peak Power Tracking (RPPT) System Using Parallel Converter Topologies

  • Ali, Muhammad Saqib;Bae, Hyun-Su;Lee, Seong-Jun;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.870-879
    • /
    • 2011
  • Regulated peak power tracking (RPPT) systems such as the series structure and the series-parallel structures are commonly used in satellite space power systems. However, these structures process the solar array power or the battery power to the load through two cascaded regulators during one orbit cycle, which reduces the energy transfer efficiency. Also the battery charging time is increased due to placement of converter between the battery and the solar array. In this paper a parallel structure has been proposed which can improve the energy transfer efficiency and the battery charging time for satellite space power RPPT systems. An analogue controller is used to control all of the required functions, such as load voltage regulation and solar array stabilization with maximum power point tracking (MPPT). In order to compare the system efficiency and the battery charging efficiency of the proposed structure with those of a series (conventional) structure and a simplified series-parallel structure, simulations are performed and the results are analyzed using a loss analysis model. The proposed structure charges the battery more quickly when compared to the other two structures. Also the efficiency of the proposed structure has been improved under different modes of solar array operation when compared with the other two structures. To verify the system, experiments are carried out under different modes of solar array operation, including PPT charge, battery discharge, and eclipse and trickle charge.

Effects of ${Zn}^{2+}$ on the Activities of Electron Transport and Photophosphorylation of Barley Chloroplasts (보리 엽록체의 전자전달과 광인산화 활성에 미치는 ${Zn}^{2+}$의 영향)

  • 김지숙;홍영남;권영명
    • Journal of Plant Biology
    • /
    • v.28 no.1
    • /
    • pp.69-77
    • /
    • 1985
  • The degree of The degree of The degree of ${Zn}^{2+}$ effect on the photosynthetic electron transport and photophosphorylation activities in barley chloroplasts has been tested.${Zn}^{2+}$treatment was done in the 2 ways. One was that it was added into the chloroplasts suspensions isolated from the plants grown under the normal ${Zn}^{2+}$level (10$^{-6}$ M). The other was that the different concentrations of ${Zn}^{2+}$was applied in each growth medium. Then, it was not added into the chloroplasts suspensions isolated from the plants. PS II activity in both way of the treatments was more severely inhibited than PS I by the increment of ${Zn}^{2+}$ concentration. The photophosphorylation activity measured by pH measurement was gradually decreased with the increase of ${Zn}^{2+}$concentration in both ways, too. However, it was shown that M $n^{2+}$ could be near fully overcome the inhibitory effect of ${Zn}^{2+}$in PS II, and $Mg^{2+}$ could also reduce the Z $n^{2+}$ inhibition in the photophosphorylation. In the low concentrations of $Mg^{2+}$ (3 to 5$\times$10$^{-3}$ M) in the suspension, ${Zn}^{2+}$(2$\times$10$^{-5}$ M) could increase the activity of photophosphorylation. As compares to other cations, Z $n^{2+}$ caused less inhibitory effect on the photophosphorylation activity than Cu, Cd, but more than Pb and Ni. It may be assumed that a complex from reaction of Z $n^{2+}$ and mercaptoethanol was produced and it could reduce the stability of CPI band during SDS-PAGE.effect on the photosynthetic electron transport and photophosphorylation activities in barley chloroplasts has been tested. Z $n^{2+}$ treatment was done in the 2 ways. One was that it was added into the chloroplasts suspensions isolated from the plants grown under the normal Z $n^{2+}$ level (10$^{-6}$ M). The other was that the different concentrations of Z $n^{2+}$ was applied in each growth medium. Then, it was not added into the chloroplasts suspensions isolated from the plants. PS II activity in both way of the treatments was more severely inhibited than PS I by the increment of Z $n^{2+}$ concentration. The photophosphorylation activity measured by pH measurement was gradually decreased with the increase of Z $n^{2+}$ concentration in both ways, too. However, it was shown that M $n^{2+}$ could be near fully overcome the inhibitory effect of Z $n^{2+}$ in PS II, and $Mg^{2+}$ could also reduce the Z $n^{2+}$ inhibition in the photophosphorylation. In the low concentrations of $Mg^{2+}$ (3 to 5$\times$10$^{-3}$ M) in the suspension, Z $n^{2+}$ (2$\times$10$^{-5}$ M) could increase the activity of photophosphorylation. As compares to other cations, Z $n^{2+}$ caused less inhibitory effect on the photophosphorylation activity than Cu, Cd, but more than Pb and Ni. It may be assumed that a complex from reaction of Z $n^{2+}$ and mercaptoethanol was produced and it could reduce the stability of CPI band during SDS-PAGE.effect on the photosynthetic electron transport and photophosphorylation activities in barley chloroplasts has been tested. Z $n^{2+}$ treatment was done in the 2 ways. One was that it was added into the chloroplasts suspensions isolated from the plants grown under the normal Z $n^{2+}$ level (10$^{-6}$ M). The other was that the different concentrations of Z $n^{2+}$ was applied in each growth medium. Then, it was not added into the chloroplasts suspensions isolated from the plants. PS II activity in both way of the treatments was more severely inhibited than PS I by the increment of Z $n^{2+}$ concentration. The photophosphorylation activity measured by pH measurement was gradually decreased with the increase of Z $n^{2+}$ concentration in both ways, too. However, it was shown that M $n^{2+}$ could be near fully overcome the inhibitory effect of Z $n^{2+}$ in PS II, and $Mg^{2+}$ could also reduce the Z $n^{2+}$ inhibition in the photophosphorylation. In the low concentrations of $Mg^{2+}$ (3 to 5$\times$10$^{-3}$ M) in the suspension, Z $n^{2+}$ (2$\times$10$^{-5}$ M) could increase the activity of photophosphorylation. As compares to other cations, Z $n^{2+}$ caused less inhibitory effect on the photophosphorylation activity than Cu, Cd, but more than Pb and Ni. It may be assumed that a complex from reaction of Z $n^{2+}$ and mercaptoethanol was produced and it could reduce the stability of CPI band during SDS-PAGE.ld reduce the stability of CPI band during SDS-PAGE.

  • PDF

Efficiency enhancement of spray QD solar cells

  • Park, Dasom;Lee, Wonseok;Jang, Jinwoong;Yim, Sanggyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.420.1-420.1
    • /
    • 2016
  • Colloidal quantum dot (CQD) is emerging as a promising active material for next-generation solar cell applications because of its inexpensive and solution-processable characteristics as well as unique properties such as a tunable band-gap due to the quantum-size effect and multiple exciton generation. However, the most widely used spin-coating method for the formation of the quantum dot (QD) active layers is generally hard to be adopted for high productivity and large-area process. Instead, the spray-coating technique may potentially be utilized for high-throughput production of the CQD solar cells (CQDSCs) because it can be adapted to continuous process and large-area deposition on various substrates although the cell efficiency is still lower than that of the devices fabricated with spin-coating method. In this work, we observed that the subsequent treatment of two different ligands, halide ion and butanedithiol, on the lead sulfide (PbS) QD layer significantly enhanced the cell efficiency of the spray CQDSCs. The maximum power conversion efficiency was 5.3%, comparable to that of the spin-coating CQDSCs.

  • PDF

Differentiation of Major Rice-Seedborne Bacteria by PCR-Amplified Polymorphism of Spacer Region Between 16S and 23S Ribosomal DNA (PCR로 증폭된 16S와 23S rDNA 사이 Spacer 부위의 다형성에 의한 주요 벼종자전염성 세균의 구별)

  • 김형무;송완엽
    • Korean Journal Plant Pathology
    • /
    • v.12 no.1
    • /
    • pp.11-20
    • /
    • 1996
  • 한 쌍의 R16-1과 R23-2R primer를 이용한 PCR에 의해 증폭된 16S와 23S rDNA 사이의 rDNA spacer 부위의 다형성들이 Pseudomonas avenae, P. glumae, P. fuscovaginae, P. syringae pv. syrngae, Xanthomonas oryzae pv. oryzae, X. oryzae, Xanthomonas herbicola 등 벼 종자전염성 51개 균주의 구분을 위하여 적용되었다. 증폭산물은 820∼950bp의 크기였으며, 각각의 종에 특이적이었고 구분이 가능하였다. Pseudomonas species의 증폭산물은 P. avenae는 950bp, P. glumae는 850bp, P. fuscovaginae는 770pb 및 P. syringae pv. syringae는 1,240, 1,100 및 820bp로 특이적이었다. P. avenae와 P. glumae의 국내균주들은 다형성에 있어 종내 변이는 없었다. X. oryzae pv. oryzae의 860bp와 X. oryzae pv. oryzicola의 890, 440 및 370bp의 이차산물에서 Xanthomonas species의 종내에서 균주에 관련없이 단일화된 다형성을 보였다. CXO 211을 제외한 모든 국내 균주는 a형에 속한 반면 하나의 국내 균주를 포함하여 4개 균주는 b형이었다. E. herbicola의 spacer 부위 증폭은 여러 개의 band를 보였으며, 증폭상은 각각 동일하였고, strain간의 종내 변이는 없었다. 본 실험 결과에 의하여 16S와 23S rDNAdp R16-1과 R23-2R primer를 이용하여 PCR 증폭된 spacer 다형성의 구별은 종자전염성 세균의 신속한 구별에 이용될 수 있을것이다.

  • PDF

Polymer (Polydimethylsiloxane (pdms)) Microchip Plasma with Electrothermal Vaporization for the Determination of Metal Ions in Aqueous Solution

  • Ryu, Won-Kyung;Kim, Dong-Hoon;Lim, H.B.;Houk, R.S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.553-556
    • /
    • 2007
  • We previously reported a 27.12 MHz inductively coupled plasma source at atmospheric pressure for atomic emission spectrometry based on polymer microchip plasma technology. For the PDMS polymer microchip plasma, molecular emission was observed, but no metallic detection was done. In this experiment, a lab-made electrothermal vaporizer (ETV) with tantalum coil was connected to the microchip plasma for aqueous sample introduction to detect metal ions. The electrode geometry of this microchip plasma was redesigned for better stability and easy monitoring of emission. The plasma was operated at an rf power of 30-70 W using argon gas at 300 mL/min. Gas kinetic temperatures between 800-3200 K were obtained by measuring OH emission band. Limits of detection of about 20 ng/mL, 96.1 ng/mL, and 1.01 μ g/mL were obtained for alkali metals, Zn, and Pb, respectively, when 10 μ L samples in 0.1% nitric acid were injected into the ETV.

Isolation, Purification and Characterization of Phytase from Asperfillus sp. (Aspergillus속 균주가 생산하는 Phytase의 분리 정제 및 특성)

  • 천성숙;조영제;차원섭;이희덕;이선호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.1
    • /
    • pp.38-45
    • /
    • 1998
  • To extract insoluble proteins and to improve funtional properties of abolished proteins, an phytase producing Aspergillus sp. SM-15 was isolated from soil. The enzyme was purified and its enzymological characteristics were investigated. Phytase production reached to maximum when the wheat bran medium containing 1% mannose, 1% yeast extract, 1% (NH4)2HPO4 and 0.2% calcium chloride was cultured for 4 days. Phytase was purified 17.1 fold and specific activity was 244.32unit/mg by a sequencial process of ammonium sulfate fraction, ion exchange chromatography and gel filtrations Pruified enzyme was confirmed as a single band by the polyacrylamide gel electro-phoresis. The molecular weight of phytase was estimated to be 46,000. The optimum pH and temperature for the phytase activity were 5.5 and 5$0^{\circ}C$. The enzyme is stable in pH 4.5~5.5, 6$0^{\circ}C$. The activity of purified enzyme was inhibited by Hg2+ whereas activited by Pb2+ and Fe2+. The activity of phytase was inhibited by the treatment with iodine. The result indicate the possible involvement of histidine at active site. Km and Vmax of the puridied phytase were 37.037mM/L and 159.87umol/min, respectively.

  • PDF