DOI QR코드

DOI QR Code

Flexible Cu-In-Se Quantum Dot-Sensitized Solar Cells Based on Nanotube Electrodes

나노튜브 전극을 기반으로 한 플렉서블 양자점 감응 태양전지

  • Kim, Jae-Yup (Division of Chemical Engineering, Hoseo University)
  • Received : 2019.02.08
  • Accepted : 2019.02.15
  • Published : 2019.02.28

Abstract

Quantum dots (QDs) are an attractive material for application in solar energy conversion devices because of their unique properties including facile band-gap tuning, a high-absorption coefficient, low-cost processing, and the potential multiple exciton generation effect. Recently, highly efficient quantum dot-sensitized solar cells (QDSCs) have been developed based on CdSe, PbS, CdS, and Cu-In-Se QDs. However, for the commercialization and wide application of these QDSCs, replacing the conventional rigid glass substrates with flexible substrates is required. Here, we demonstrate flexible CISe QDSCs based on vertically aligned $TiO_2$ nanotube (NT) electrodes. The highly uniform $TiO_2$ NT electrodes are prepared by two-step anodic oxidation. Using these flexible photoanodes and semi-transparent Pt counter electrodes, we fabricate the QDSCs and examine their photovoltaic properties. In particular, photovoltaic performances are optimized by controlling the nanostructure of $TiO_2$ NT electrodes.

Keywords

References

  1. A. J. Nozik, M. C. Beard, J. .M. Luther, M. Law, R. J. Ellingson and J. C. Johnson: Chem. Rev., 110 (2010) 6873. https://doi.org/10.1021/cr900289f
  2. P. V. Kamat: J. Phys. Chem. Lett., 4 (2013) 908. https://doi.org/10.1021/jz400052e
  3. J.-Y. Kim, J. Yang, J. H. Yu, W. Baek, C.-H. Lee, H. J. Son, T. Hyeon and M. J. Ko: ACS Nano, 9 (2015) 11286. https://doi.org/10.1021/acsnano.5b04917
  4. J. Du, Z. Du, J.-S. Hu, Z. Pan, Q. Shen, J. Sun. D. Long, H. Dong, L. Sun, X. Zhong and L.-J. Wan: J. Am. Chem. Soc., 138 (2016) 4201. https://doi.org/10.1021/jacs.6b00615
  5. T. M. Brown, F. D. Rossi, F. D. Giacomo, G. Mincuzzi, V. Zardetto, A. Realea and A. D. Carlo: J. Mater. Chem. A, 2 (2014) 10788. https://doi.org/10.1039/C4TA00902A
  6. T. Miyasaka: J. Phys. Chem. Lett., 2 (2011) 262. https://doi.org/10.1021/jz101424p
  7. J.-Y. Kim, K. J. Lee, S. H. Kang, J. Shin and Y.-E. Sung: J. Phys. Chem. C, 115 (2011) 19979. https://doi.org/10.1021/jp2025736
  8. J.-J. Wang, Y.-Q. Wang, F.-F. Cao, Y.-G. Guo and L.-J. Wan: J. Am. Chem. Soc., 132 (2010) 12218. https://doi.org/10.1021/ja1057955
  9. M. E. Norako and R. L. Brutchey: Chem. Mater., 22 (2010) 1613. https://doi.org/10.1021/cm100341r
  10. A. Ghicov, S. P. Albu, R. Hahn, D. Kim, T. Stergiopoulos, J. Kunze, C.-A. Schiller, P. Falaras and P. Schmuki: Chem. Asian J., 4 (2009) 520. https://doi.org/10.1002/asia.200800441