나노튜브 전극을 기반으로 한 플렉서블 양자점 감응 태양전지

김 재 엽*

호서대학교 화학공학부

Flexible Cu-In-Se Quantum Dot-Sensitized Solar Cells Based on Nanotube Electrodes

Jae-Yup Kim*

Division of Chemical Engineering, Hoseo University, Asan 31499, Republic of Korea (Received February 8, 2019; Accepted February 15, 2019)

Abstract Quantum dots (QDs) are an attractive material for application in solar energy conversion devices because of their unique properties including facile band-gap tuning, a high-absorption coefficient, low-cost processing, and the potential multiple exciton generation effect. Recently, highly efficient quantum dot-sensitized solar cells (QDSCs) have been developed based on CdSe, PbS, CdS, and Cu-In-Se QDs. However, for the commercialization and wide application of these QDSCs, replacing the conventional rigid glass substrates with flexible substrates is required. Here, we demonstrate flexible CISe QDSCs based on vertically aligned TiO_2 nanotube (NT) electrodes. The highly uniform TiO_2 NT electrodes are prepared by two-step anodic oxidation. Using these flexible photoanodes and semi-transparent Pt counter electrodes, we fabricate the QDSCs and examine their photovoltaic properties. In particular, photovoltaic performances are optimized by controlling the nanostructure of TiO_2 NT electrodes.

Keywords : Quantum dot-sensitized solar cells, Flexible, Nanotube electrodes

1. 서 론

반도체 물질을 그 물질의 보어 반지름(Bohr radius) 이 하의 나노 크기로 만들었을 때 양자구속효과(quantum confinement effect)에 의해 벌크 상태(bulk state) 보다 더 큰 광학 밴드갭(optical band-gap)을 지니게 된다. 이러한 반도체 나노 입자를 일반적으로 양자점(quantum dot)이라 일컫는다. 양자점은 크기가 작을수록 밴드갭이 커지기 때 문에 광학 성질의 조절이 쉽다는 장점을 지니며, 몰 흡광 계수(molar absorption coefficient)가 크기 때문에 태양전 지 소재로 큰 관심을 받아왔다. 또한, 하나의 광자 (photon)를 흡수하여 광전자(photoelectron)를 두 개 이상 여기(excitation)시킬 수 있는 특성 때문에 태양전지에 응 용 시 이론 효율을 뛰어넘을 수 있다는 가능성이 입증된 바 있다[1-3].

최근에 양자점을 광흡수 물질로 활용한 양자점 감응 태 양전지(quantum dot-sensitized solar cell; QDSC) 연구로 8~11% 가량의 높은 광변환 효율을 기록한 것이 수차례 보 고되었다 [2-4]. 이러한 양자점 감응 태양전지는 CdSe, PbS, CdS, Cu-In-Se 양자점 등을 광흡수 물질로 사용하며, 20 nm 가량의 TiO₂ 입자로 이루어진 다공성 필름을 광전 극으로 활용한다. 또한, 전해질로는 polysulfide 전해질을 활용하며, 이에 최적화된 상대전극으로는 Cu₂S가 일반적 으로 사용된다.

이처럼 최근의 높은 광변환 효율로 인해 양자점 감응 태 양전지가 주목받고 있지만 앞으로 상용화를 이루고 광범 위한 응용가능성을 가지려면 플렉서블(flexible)한 형태로 소자를 제작하는 공정이 요구된다. 기존의 rigid한 기판에

- 김재엽: 교수

^{*}Corresponding Author: Jae-Yup Kim, **TEL:** +82-41-540-5759, **FAX:** +82-41-540-5758, **E-mail:** jykim17@hoseo.edu

제작하는 방식을 플렉서블한 기판에 기반하여 제작하는 방식으로 대체한다면 휴대용 기기, 의류 등 다양한 분야에 태양전지를 응용하기 쉬워진다. 또한, 플렉서블한 기판은 roll-to-roll 공정 등 경제적인 제작 공정에 적용하기에 용 이하다[5, 6]. 그러나 현재까지 플렉서블 양자점 감응 태양 전지에 관해서는 그 연구 사례가 매우 적다.

본 연구에서는 플렉서블한 Ti 금속 호일(foil) 위에 전기 화학 양극 산화법(anodic oxidation)으로 TiO₂ 나노튜브 전 극을 합성하고, 이를 양자점 감응 태양전지에 응용하였다. 특별히 two-step 양극 산화법을 통해 대면적에서 균일한 구조의 TiO₂ 나노튜브 전극을 합성하였으며, 광흡수 물질 로서 Cu-In-Se 양자점을 활용하였다. 양극 산화 시간의 조 절을 통해 나노튜브의 길이를 10~40 μm로 변화시켰으며, 나노튜브 길이에 따라 태양전지 성능이 어떻게 달라지는 지 분석하였다.

2. 실험방법

Two-step 양극 산화법으로 TiO₂ 나노튜브 전극을 합성 하였다[7]. 0.25 wt% NH₄F, 2 wt% 증류수 용액에 Ti 호일 (Goodfellow, 0.25 cm 두께)을 넣어 양극 산화를 진행하였 으며, 상대전극으로는 Pt mesh를 활용하였다. 60 V의 직 류 전압을 가하여 2시간 동안 일차 양극 산화를 진행한 후 증류수에 넣고 초음파 분산기를 통해 Ti 호일 표면에 생 성된 TiO₂ 나노튜브를 제거하였다. 일차 양극 산화로 전처 리한 기판을 같은 조건 하에서 1~4시간 동안 이차 양극 산화를 진행하여 TiO₂ 나노튜브 전극을 합성하였다. 이후 450°C 공기 중에서 4시간 동안 열처리하여 TiO₂를 결정화 시켰다.

Cu-In-Se 콜로이드 양자점을 기존 문헌에 보고된 방법에 따라 합성하였다[3]. Dichloromethane에 분산된 콜로이드 양자점 용액에 고온 열처리를 거친 TiO₂ 나노튜브 전극을 24시간 동안 담지하여 전극 표면에 양자점을 코팅하였다. 이후 광전극 표면에 successive ionic layer adsorption and reaction(SILAR) 방법을 통해 ZnS 층을 코팅하였다. 즉, 먼저 0.05 M Zn(NO₃)₂ · 6H₂O의 에탄올 용액에 전극을 1 분간 담지 하였고, 이후 0.05 M Na₂S의 메탄올/증류수 (v:v = 1:1) 용액에 1분간 담지 하여 전극 표면에 ZnS 층을 코팅하였다[3, 4]. 이러한 ZnS SILAR 공정을 2회 반복하 였다.

Pt 상대전극은 열분해법(thermal decomposition)을 통해 F-doped SnO₂(FTO) 기판에 제작하였다. FTO 기판 위에 5 mM H₂PtCl₆ 의 isopropanol 용액을 떨어뜨린 뒤 400°C 공기 중에서 15분 동안 열처리를 진행하였다. 이후 열접 착 필름(Surlyn, 두께: 60 μm)을 사용하여 TiO₂ 나노튜브

Fig. 1. Photographs of (a) as-prepared and (b) QD-sensitized TiO_2 NT electrodes. (c) Schematic device structure of QDSC employing a TiO_2 NT electrode.

전극과 Pt 상대전극을 결합하였다. 마지막으로 소자 내에 1 M S, 1 M Na₂S 의 증류수 용액을 전해질로 주입하여 최 종적으로 Fig. 1과 같은 구조의 양자점 감응 태양전지를 제작하였다.

TiO₂ 나노튜브의 구조를 주사전자 현미경(scanning electron microscope; SEM, Carl Zeiss SUPRA55VP)과 투 과전자 현미경(transmission electron microscope; TEM)을 통해 관찰하였다. TiO₂ 나노튜브 전극 위에 코팅된 양자점 의 화학적 특성은 X-ray photoelectron spectroscopy(XPS, AXIS SUPRA, Kratos Inc.)를 사용하여 분석하였다. 양자 점 감응 태양전지의 전류밀도-전압(*J-V*) 특성은 solar simulator(XIL model 05A50KS, 500 W 제논 램프)를 사용 하여 AM 1.5G, one sun 조건에서 분석하였다. 또한 전기 화학 임피던스 분석을 위해 Solartron 1287 potentiostat과 Solartron 1260 frequency-response detector를 사용하였으 며, -0.4 V bias potential에서 임피던스 스펙트럼을 얻었다. 이 때, 10 mV의 sinusoidal perturbation을 가하였으며 주파 수는 0.1~100 kHz에서 분석하였다.

3. 결과 및 고찰

본 연구에서는 Fig. 1(a)에서 보듯이 플렉서블한 Ti 호일 기판을 기반으로 하여 TiO₂ 나노튜브 전극을 제작하였으 며 이를 양자점 감응 태양전지에 응용하였다. Fig. 1(b)에 서 보듯이 고온 열처리 후 나노튜브 전극 표면에 Cu-In-Se 양자점이 효과적으로 코팅됨을 알 수 있다. 제작한 플 렉서블 광전극은 불투명하기 때문에 back-side illumination을 위하여 반투명한 Pt 상대전극을 활용하여 태양전지 를 제작하였다(Fig. 2(c)).

Fig. 2는 two-step 양극산화 및 고온 열처리를 거친 TiO₂ 나노튜브 전극의 SEM 사진이다. 튜브 안 지름 및 벽 두 께는 각각 60~70 nm, 15~20 nm 가량이며, Fig. 2(a)에서 보듯이 대면적에 걸쳐서 균일한 구조를 지님을 확인하였 다. 튜브의 길이는 양극 산화 시간에 비례하여 조절 가능 한데, 2시간 양극 산화 진행 시 Fig. 2(c)에서 보듯이 약 20 μm의 튜브 길이를 나타내었다. 양극 산화 시간을 1, 2, 3, 4시간 진행 시 나노튜브의 길이는 각각 10, 20, 30, 40 μm를 지님을 확인하였다. Fig. 2(d)에서 보듯이 TEM을

Fig. 2. (a,b) Surface and (c) cross-sectional SEM images of the annealed TiO_2 NT electrodes. (d) TEM image of the annealed TiO_2 NT electrode.

통해서도 규칙적인 나노튜브 구조를 확인할 수 있었다. 이 처럼 균일한 규칙적 나노구조는 two-step 양극 산화에 의 해 가능했다고 판단할 수 있는데, 보고에 의하면 나노튜브 위에 얇은 두께의 interconnected nanoporous 층이 위치하여 나노튜브가 좀 더 균일하게 성장하도록 유도된 것이다[7].

TiO₂ 나노튜브 전극 표면에 코팅된 양자점의 화학적 상 태는 Fig. 3과 같이 XPS를 통해 분석하였다. XPS 결과는 C 1s peak(binding energy 284.6 eV)을 기준으로 보정하였 다. Fig. 3은 high resolution XPS spectra를 보여주고 있는 데 Cu 2p, In 3d, 그리고 Se 3d를 나타내었다. 측정된 binding energy(BE)는 Cu 2p_{3/2}, In 3d_{5/2}, Se 3d 각각 931.9, 444.5, 53.9 eV를 나타내었는데, 이는 기존 보고된 tetragonal chalcopyrite Cu-In-Se 나노입자의 경우와 일치하였다[8, 9]. 또한, SeO₂에 해당하는 peak도 나타난 것으로 보아 코팅된 양자점 표면이 부분적으로 산화되었음을 추측할 수 있다.

Fig. 4(a)는 제작한 양자점 감응 태양전지의 *J-V* 특성을 나노튜브 길이에 따라 분석한 그래프이다. 이를 통해 얻은 태양전지 성능 parameter를 Table 1에 정리하였다. Table 1 에서 보듯이 나노튜브 길이가 길어질수록 광전류(*J*_{SC}) 값 이 전반적으로 증가함을 알 수 있다. 이는 나노튜브 길이 가 길어져 roughness factor가 커질수록 광을 흡수하는 양 자점의 흡착량이 증가하기 때문이다. 그러나 나노튜브 길 이가 길어질수록 광전압(*V*_{OC})은 지속적으로 감소하였는데, 이는 나노튜브 길이가 길수록 전해질과 접하는 electron recombination center가 많아지기 때문이라고 판단할 수 있 다[10]. 이러한 trade-off 관계 속에서 나노튜브 길이가 30 µm 일 때 가장 높은 광변환 효율인 0.96%를 기록하였다.

Table 1. Summary of *J-V* characteristics for QDSCs according to the tube length of the TiO₂ NT electrodes

Tube length	$J_{ m SC}$	$V_{\rm OC}$	FF	η
(µm)	(mA/cm^2)	(V)	(%)	(%)
10	7.97	0.418	21	0.70
20	10.80	0.398	20	0.86
30	13.05	0.389	19	0.96
40	10.31	0.345	22	0.78

Fig. 3. High-resolution XPS results of the Cu-In-Se QDs coated on the TiO₂ NT electrode for Cu 2p, In 3d, Se 3d spectra.

Fig. 4. (a) Photocurrent density-voltage (J-V) characteristics and (b) electrochemical impedance spectra of the QDSCs employing TiO₂ NT electrodes. The inset in (b) represents the equivalent circuit model.

나노튜브 길이에 따른 광전기화학 특성을 더 상세히 분 석하기 위해 Fig. 4(b)에서 보듯이 전기화학 임피던스 분 석을 수행하였다. 얻은 결과를 Fig. 4(b) inset에 표현된 등 가회로로 피팅하였다. 등가회로의 각 요소 중 특별히 *R*_{ct} 의 경우, 광전극과 전해질 사이 계면에서 일어나는 전하 전달(charge transfer)과 관련된 저항(resistance)를 나타내 며, 이 값이 작을수록 같은 조건에서 electron recombination이 심하다고 판단할 수 있다[7]. 피팅한 결과 나노튜브 의 길이가 10, 20, 30, 40 µm로 증가할수록 *R*_{ct} 값이 각각 874, 580, 455, 192 Ω · cm²로 감소하였다. 이는 나노튜브 의 길이가 증가할수록 electron recombination center가 많 아졌다고 한 판단이 틀리지 않았음을 말해준다. 또한, 나 노튜브의 길이가 길어질수록 전해질과의 electron recombination을 방지할 수 있는 방법의 개발이 요구됨을 알 수 있다.

4. 결 론

본 연구에서는 양극 산화법으로 합성한 플렉서블한 TiO₂ 나노튜브 전극을 양자점 감응 태양전지에 적용하였 다. Two-step 양극 산화법에 의해 비교적 대면적에서 균일 한 나노구조를 보이는 전극을 합성할 수 있었다. 고온 열 처리 후 TiO₂ 나노튜브 전극 표면에 Cu-In-Se 양자점이 효 과적으로 코팅되었으며, XPS 분석결과 양자점 표면은 부 분적으로 산화됨을 알 수 있었다. 나노튜브 길이를 10~40 µm로 변화시켜가며 태양전지 성능을 분석하였는데, 나노 튜브의 길이가 길어질수록 광전류는 증가하지만 광전압은 지속적으로 감소함을 알 수 있었다. 이는 나노튜브 길이가 길어질수록 양자점 흡착량은 증가하지만, electron recombination은 증가함을 임피던스 분석을 통해 증명하였다. 이 러한 trade-off 관계 속에서 나노튜브 길이가 30 μm 일 때, 가장 높은 광변환 효율로 이어짐을 관찰하였다.

감사의 글

이 논문은 2017년도 호서대학교의 재원으로 학술연구비 지원을 받아 수행된 연구임(20170086).

References

- [1] A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson and J. C. Johnson: Chem. Rev., **110** (2010) 6873.
- [2] P. V. Kamat: J. Phys. Chem. Lett., 4 (2013) 908.
- [3] J.-Y. Kim, J. Yang, J. H. Yu, W. Baek, C.-H. Lee, H. J. Son, T. Hyeon and M. J. Ko: ACS Nano, 9 (2015) 11286.
- [4] J. Du, Z. Du, J.-S. Hu, Z. Pan, Q. Shen, J. Sun. D. Long, H. Dong, L. Sun, X. Zhong and L.-J. Wan: J. Am. Chem. Soc., 138 (2016) 4201.
- [5] T. M. Brown, F. D. Rossi, F. D. Giacomo, G. Mincuzzi, V. Zardetto, A. Realea and A. D. Carlo: J. Mater. Chem. A, 2 (2014) 10788.
- [6] T. Miyasaka: J. Phys. Chem. Lett., 2 (2011) 262.
- [7] J.-Y. Kim, K. J. Lee, S. H. Kang, J. Shin and Y.-E. Sung: J. Phys. Chem. C, 115 (2011) 19979.
- [8] J.-J. Wang, Y.-Q. Wang, F.-F. Cao, Y.-G. Guo and L.-J. Wan: J. Am. Chem. Soc., 132 (2010) 12218.
- [9] M. E. Norako and R. L. Brutchey: Chem. Mater., 22 (2010) 1613.
- [10] A. Ghicov, S. P. Albu, R. Hahn, D. Kim, T. Stergiopoulos, J. Kunze, C.-A. Schiller, P. Falaras and P. Schmuki: Chem. Asian J., 4 (2009) 520.