• Title/Summary/Keyword: Pavement slab

Search Result 160, Processing Time 0.023 seconds

Preliminary Investigation of Pavement Adjustment Concepts for Slab Thickness Deficiency in Portland Cement Concrete Pavement (콘크리트 포장의 슬래브 두께 손실에 대한 지불규정 기준 정립을 위한 기초연구)

  • Kim, Seong-Min;Rhee, Suk-Keun
    • International Journal of Highway Engineering
    • /
    • v.9 no.2 s.32
    • /
    • pp.141-151
    • /
    • 2007
  • The current standards and specifications for the road pavement construction have been developed based on materials and construction methods. The pavements constructed in accordance with those specifications do not guarantee high performance of pavements since they do not consider long-term performance of pavements. Therefore, as part of the study to develop performance-based construction standards for pavements, the payment adjustment methods based on the pavement performance are currently being developed. This paper presents preliminary studies performed to develop the payment adjustment methods when there is deficiency in the concrete slab thickness that is one oi the most important factors for the pavement design and construction. First, the payment adjustment methods in USA were investigated. Then, the AASHTO failure equation, the relationship between slab thickness and stress, and the relationship between stress level and pavement life were employed to propose the payment adjustment concepts based on the pavement performance for the deficient slab thickness. The variation in the slab thickness according to measurement locations was investigated by taking cores. In addition, the measurement methods of slab thickness and the variation of measured thicknesses depending on performers were analyzed, and finally the methodology to develop the thickness deficiency ranges for the use in the payment adjustment methods was proposed.

  • PDF

Investigation of Slab Thickness Influence on Prestressing Design of Post-Tensioned Concrete Pavement (포스트텐션 콘크리트 포장 긴장 설계에 대한 슬래브 두께의 영향 분석)

  • Yun, Dong-Ju;Kim, Seong-Min;Bae, Jong-Oh
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.107-115
    • /
    • 2009
  • This study was conducted to investigate the effect of the slab thickness on the tensioning design and to determine the optimal slab thickness of the post-tensioned concrete pavement (PTCP). The tensile stresses due to the vehicle and environmental loads were obtained using a finite element analysis model and the tensioning stress was calculated employing an allowable flexural strength. The environmental loads of both the constant temperature gradient and the constant temperature difference between top and bottom of the slab were considered. The tensioning designs for various slab thicknesses were performed considering prestressing losses. The comparison results showed that generally as the thickness increased, the number of tendons became larger. Consequently, the design was not economical for a thicker slab thickness. Even though the number of tendons became smaller with an increase in the thickness under the small environmental load, a thicker PTCP slab was not economical because of a higher cost of concrete than that of steel. Therefore, the slab thickness should be kept in minimum within the construction available thicknesses.

  • PDF

A Finite Element Analysis Of Thermal Load On The Concrete Highway Pavement (유한요소법에 의한 온도 하중의 해석)

  • 조병완
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.04a
    • /
    • pp.26-28
    • /
    • 1991
  • In the recent years, a rigid pavement composed of a flat concrete slab has ken constructed due to the desirable structural strength of concrete, durability and economy. However, despite of precise design and construction of concrete highway pavement, some sections of the 88 Olympic express highway, Jung-bu express highway, and Kyung-bu express highway, which have shown premature cracking, faulting, and pumping before the end of their intended service life, have already been viewed with great concerns by highway officials and engineers. Since environmental variations and traffic loads might be considered as major factors to cause pavement failure problems, the thermal load due to temperature variations between top and bottom surface of the concrete slab was highlighted to verify analytical behavior of concrete slab using the finite element method.

  • PDF

Analysis of Early-age Property of JPCP Slab of Incheon International Airport (인천국제공항 줄눈콘크리트 슬래브의 초기재령 특성분석)

  • Sun, Ren Juan;Jeong, Jin-Hoon;Cheon, Sung-Han;Lim, Jin-Sun
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.335-339
    • /
    • 2007
  • A jointed plain concrete pavement(JPCP) slab was tested in Incheon International Airport construction work to study the early-age property of JPCP slab. The temperature and moisture data of the concrete slab had been collected and analyzed. The setting time of the concrete was decided by using the maturity method. The initial setting time is 2 hours 40 minutes after the placement of the slab. The investigation and analysis of the slab began from the initial setting time. The strains of different locations and different depths of the slab show different variation character.

  • PDF

Effect of Slab-base Friction on Response of JCP Slab with Different Material and Geometric Properties

  • Sun, Ren-Juan;Lim, Jin-Sun;Jeong, Jin-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.99-110
    • /
    • 2007
  • A single slab concrete pavement has been modeled and analyzed by ABAQUS program. The stress and displacement of the JCP slab under traffic load with frictionless contact interaction between slab and base calculated by ABAQUS program have been compared with the results obtained by KENSLABS program. The results of the stresses of the two modeling show similar tendency and the difference of the two modeling is very small however the results of the displacement of the two modeling show some dissimilarity. In order to analyze the effects of material and geometric properties on the responses of slab, some varying parameters were chosen as input for the modeling. The changing parameters include the thickness and elastic modulus of the concrete slab, the thickness and elastic modulus of base and the elastic modulus of the subgrade. The contact interaction between the slab and base layer had been also studied and different friction coefficient 0, 2.5, 6.6, 7.5, 8.9 had been used to simulate the different friction interface condition. The results of the analysis showed that the responses of the concrete slab vary with the material and geometric properties of the pavement structure and the slab-base friction condition.

Development of Finite Element Analysis Program for the Concrete Pavement (유한 요소법에 의한 콘크리트 포장도로의 구조해석 프로그램개발)

  • 조병완
    • Computational Structural Engineering
    • /
    • v.3 no.2
    • /
    • pp.89-95
    • /
    • 1990
  • As modern industry go further, a rigid concrete pavement has been widely constructed. The load carrying capacity of the flexible asphalt pavements is brought about by a layered system, distributing the load over the subgrade, rather than by the bending action of the slab. On the other hand, the rigid pavement, because of its rigidity and high modulus of elasticity, tends to distribute the traffic load over wide subbases, and its capacity of the strength is supplied by the slab itself. Thus, it is necessary to study the structural behavior of concrete slab under the variations of temperature changes and applied traffic loads. It reguires the development of finite element analysis program for the concrete highway pavement, which provides better understanding of concrete pavement behavior and effective design data to highway engineers.

  • PDF

Nonlinear Subgrade Model-Based Comparison Study between the Static and Dynamic Analyses of FWD Nondestructive Tests (노상의 비선형 모델에 근거한 비파괴 FWD 시험에 있어 정적과 동적 거동의 비교연구)

  • Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.73-80
    • /
    • 2017
  • PURPOSES : This paper presents a comparison study between dynamic and static analyses of falling weight deflectometer (FWD) testing, which is a test used for evaluating layered material stiffness. METHODS: In this study, a forward model, based on nonlinear subgrade models, was developed via finite element analysis using ABAQUS. The subgrade material coefficients from granular and fine-grained soils were used to represent strong and weak subgrade stiffnesses, respectively. Furthermore, the nonlinearity in the analysis of multi-load FWD deflection measured from intact PCC slab was investigated using the deflection data obtained in this study. This pavement has a 14-inch-thick PCC slab over fine-grained soil. RESULTS: From case studies related to the nonlinearity of FWD analysis measured from intact PCC slab, a nonlinear subgrade model-based comparison study between the static and dynamic analyses of nondestructive FWD tests was shown to be effectively performed; this was achieved by investigating the primary difference in pavement responses between the static and dynamic analyses as based on the nonlinearity of soil model as well as the multi-load FWD deflection. CONCLUSIONS : In conclusion, a comparison between dynamic and static FEM analyses was conducted, as based on the FEM analysis performed on various pavement structures, in order to investigate the significance of the differences in pavement responses between the static and dynamic analyses.

A Study on the Evaluation System of Jointed Concrete Pavement (콘크리트포장 줄눈부의 평가에 관한 기법연구)

  • Park, Je-Seon;Lee, Joo-Hyung;Hong, Chang-Woo;Lee, Jung-Ho
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.245-251
    • /
    • 1999
  • The joint in the concrete pavement provides a control against transverse or longitudinal cracking at slab, which may be caused by temperature or moisture variation during or after hydration. Without control of cracking, random crack may cause more serious distresses and result in structural or functional failure of pavement system. Sometimes, joint itself, purposed to control crack, may cause a distresses in joint due to its inherent weakness in structural integrity. Thus, the load transfer capacity in joint is very important for serviceability and durability. The purpose of this dissertation was to develop an evaluation system at joints of jointed concrete pavement using finite element analysis was performed using ILLI-SLAB program with a selected variables which might affect fairly to on the performance of transverse joints. The most significant variables were selected from precise analysis. It was concluded that the variables which most significantly affect to pavement deflections are the modulus of subgrade reaction(K) and the modulus of dowel/concrete interaction(G), and limiting criteria on the performance of joints at JCP at 300pci, 500,000 lb/in. respectively.

  • PDF

Analysis of Early Behavior of Concrete Pavement with Initial Measurements (콘크리트 포장(鋪裝)의 초기계측(初期計測)을 통한 초기거동(初期擧動) 특성분석(特性分析))

  • Jeong, Won-Kyong;Kim, Dong-Ho;Kwan, Hyouk-Chan;Yun, Kyong-Ku
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.165-173
    • /
    • 2003
  • The purpose of this paper is to analysis of initial behavior of concrete pavement with initial measurement strain gauge for concrete pavement at field, and to investigate the field test results for field applicability testing. The early-age behaviors of concrete pavement slabs were measured using the strain gauges. From the slab depths and positions, the outputs from each gauges were recorded at initial curing period. The initial measurement of concrete pavement and check of crack at the joint were performed, the results could be summarized as follows. From the results of concrete strength, compressive strength and flexural strength were showed $271kgf/cm^2$, $43kgf/cm^2$ respectively. From the tests of early-age strain measurement, it was found that the strain varied at the maximum value of $150{\mu}{\varepsilon}$ and early behavior of concrete slab was showed a tensile strain. However, for long-term was showed a compressive strain due to dry-shrinkage.

  • PDF

Experimental and numerical simulation study on fracture properties of self-compacting rubberized concrete slabs

  • Wang, Jiajia;Chen, Xudong;Bu, Jingwu;Guo, Shengshan
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.283-293
    • /
    • 2019
  • The limited availability of raw materials and increasing service demands for pavements pose a unique challenge in terms of pavement design and concrete material selection. The self-compacting rubberized concrete (SCRC) can be used in pavement design. The SCRC pavement slab has advantages of excellent toughness, anti-fatigue and convenient construction. On the premise of satisfying the strength, the SCRC can increase the ductility of pavement slab. The aim of this investigation is proposing a new method to predict the crack growth and flexural capacity of large-scale SCRC slabs. The mechanical properties of SCRC are obtained from experiments on small-scale SCRC specimens. With the increasing of the specimen depth, the bearing capacity of SCRC beams decreases at the same initial crack-depth ratio. By constructing extended finite element method (XFEM) models, crack growth and flexural capacity of large-scale SCRC slabs with different fracture types and force conditions can be predicted. Considering the diversity of fracture types and force conditions of the concrete pavement slab, the corresponding test was used to verify the reliability of the prediction model. The crack growth and flexural capacity of SCRC slabs can be obtained from XFEM models. It is convenient to conduct the experiment and can save cost.