Browse > Article
http://dx.doi.org/10.12989/cac.2019.24.4.283

Experimental and numerical simulation study on fracture properties of self-compacting rubberized concrete slabs  

Wang, Jiajia (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University)
Chen, Xudong (College of Civil and Transportation Engineering, Hohai University)
Bu, Jingwu (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University)
Guo, Shengshan (China Institute of Water Resources and Hydropower Research)
Publication Information
Computers and Concrete / v.24, no.4, 2019 , pp. 283-293 More about this Journal
Abstract
The limited availability of raw materials and increasing service demands for pavements pose a unique challenge in terms of pavement design and concrete material selection. The self-compacting rubberized concrete (SCRC) can be used in pavement design. The SCRC pavement slab has advantages of excellent toughness, anti-fatigue and convenient construction. On the premise of satisfying the strength, the SCRC can increase the ductility of pavement slab. The aim of this investigation is proposing a new method to predict the crack growth and flexural capacity of large-scale SCRC slabs. The mechanical properties of SCRC are obtained from experiments on small-scale SCRC specimens. With the increasing of the specimen depth, the bearing capacity of SCRC beams decreases at the same initial crack-depth ratio. By constructing extended finite element method (XFEM) models, crack growth and flexural capacity of large-scale SCRC slabs with different fracture types and force conditions can be predicted. Considering the diversity of fracture types and force conditions of the concrete pavement slab, the corresponding test was used to verify the reliability of the prediction model. The crack growth and flexural capacity of SCRC slabs can be obtained from XFEM models. It is convenient to conduct the experiment and can save cost.
Keywords
self-compacting rubberized concrete (SCRC); crack growth; flexural capacity; extended finite element method (XFEM);
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Chen, X., Wu, S. and Zhou, J. (2013), "Experimental study and analytical formulation of mechanical behavior of concrete", Constr. Build. Mater., 47(10), 662-670. https://doi.org/10.1016/j.conbuildmat.2013.05.041.   DOI
2 Chen, X., Wu, S. and Zhou, J. (2014), "Strength values of cementitious materials in bending and tension test methods", J. Mater. Civil Eng., 26(3), 484-490. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000846.   DOI
3 Dong, W., Zhang, X., Zhang, B. and Wu, Q. (2018), "Influence of sustained loading on fracture properties of concrete", Eng. Fract. Mech., 200, 134-145. https://doi.org/10.1016/j.engfracmech.2018.07.034.   DOI
4 Fakhri, M. and Amoosoltani, E. (2017), "Crack behavior analysis of roller compacted concrete mixtures containing reclaimed asphalt pavement and crumb rubber", Eng. Fract. Mech., 180, 43-59. https://doi.org/10.1016/j.engfracmech.2017.05.011.   DOI
5 Gaedicke, C., Roesler, J. and Evangelista Jr, F. (2012), "Threedimensional cohesive crack model prediction of the flexural capacity of concrete slabs on soil", Eng. Fract. Mech., 94, 1-12. https://doi.org/10.1016/j.engfracmech.2012.04.029.   DOI
6 Gao, H. (2007), "Influence factors analysis of broken slab on cement concrete pavement", Forest Eng., 4.
7 Gencel, O., Ozel, C., Brostow, W. and MartA-nez-Barrera, G. (2015), "Mechanical properties of self-compacting concrete reinforced with polypropylene fibres", Mater. Res. Innov., 15(3), 216-225. https://doi.org/10.1179/143307511X13018917925900.   DOI
8 Chen, X., Bu, J., Fan, X., Lu, J. and Xu, L. (2017), "Effect of loading frequency and stress level on low cycle fatigue behavior of ordinary concrete in direct tension", Constr. Build. Mater., 133, 367-375. https://doi.org/10.1016/j.conbuildmat.2016.12.085.   DOI
9 Guan, J., Hu, X. and Li, Q. (2016), "In-depth analysis of notched 3-p-b concrete fracture", Eng. Fract. Mech., 165, 57-71. https://doi.org/10.1016/j.engfracmech.2016.08.020.   DOI
10 Wang, H.Y. (2012), "Reason analysis and processing method of cement concrete pavement broken slab", Shanxi Architecture. 2012(33), 92.
11 Xu, X.P. and Needleman, A. (1994), "Numerical simulations of fast crack growth in brittle solids", J. Mech. Phys. Solid., 42(9), 1397-1434. https://doi.org/10.1016/0022-5096(94)90003-5.   DOI
12 Yung, W.H., Yung, L.C. and Hua, L.H. (2013), "A study of the durability properties of waste tire rubber applied to selfcompacting concrete", Constr. Build. Mater., 41(41), 665-672. https://doi.org/10.1016/j.conbuildmat.2012.11.019.   DOI
13 Zak, A., Krawczuk, M. and Ostachowicz, W. (2006), "Propagation of in-plane waves in an isotropic panel with a crack", Finite Elem. Anal. Des., 42(11), 929-941. https://doi.org/10.1016/j.finel.2006.01.013.   DOI
14 Zhai, C., Wang, X., Kong, J., Li, S. and Xie, L. (2017), "A sophisticated simulation for the fracture behavior of concrete material using XFEM", Earthq. Eng. Eng. Vib., 16(4), 859-881. https://doi.org/10.1007/s11803-017-0393-x.   DOI
15 Zhang, X.F. and Xu, S.l. (2008), "Determination of fracture energy of three-point bending concrete beam using relationship between load and crack-mouth opening displacement", J. Hydraul. Eng., 39(6), 714-719.   DOI
16 Hesami, S., Hikouei, I.S. and Emadi, S.A.A. (2016), "Mechanical behavior of self-compacting concrete pavements incorporating recycled tire rubber crumb and reinforced with polypropylene fiber", J. Clean. Prod., 133, 228-234. ps://doi.org/10.1016/j.jclepro.2016.04.079.   DOI
17 Zheng, L., Huo, X.S. and Yuan, Y. (2008), "Strength, modulus of elasticity, and brittleness index of rubberized concrete", J. Mater. Civil. Eng., 20(11), 692-699. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:11(692).   DOI
18 Zhou, R. and Lu, Y. (2018), "A mesoscale interface approach to modelling fractures in concrete for material investigation", Constr. Build. Mater., 165, 608-620. https://doi.org/10.1016/j.conbuildmat.2018.01.040.   DOI
19 Zhu, X.Y., Chen, X.D., Shen, N., Tian, H.X., Fan, X.Q. and Lu, J. (2018), "Mechanical properties of pervious concrete with recycled aggregate", Comput. Concrete., 21(6), 623-635. https://doi.org/10.12989/cac.2018.21.6.623.
20 Guiamatsia, I., Falzon, B.G., Davies, G.A.O. and Iannucci, L. (2009), "Element-free Galerkin modelling of composite damage", Compos. Sci. Technol., 69(15-16), 2640-2648. https://doi.org/10.1016/j.compscitech.2009.08.005.   DOI
21 Khaloo, A.R., Dehestani, M. and Rahmatabadi, P. (2008), "Mechanical properties of concrete containing a high volume of tire-rubber particles", Waste Manage., 28(12), 2472-2482. https://doi.org/10.1016/j.wasman.2008.01.015.   DOI
22 Hillerborg, A. (1985), "The theoretical basis of a method to determine the fracture energy GF of concrete", Mater. Struct., 18(4), 291-296. https://doi.org/10.1007/BF02472919.   DOI
23 Hou, Y., Yue, P., Xin, Q., Pauli, T. and Sun, W. (2014), "Fracture failure of asphalt binder in mixed mode (Modes I and II) by using phase-field model", Road Mater. Pavement, 15(1), 167-181. https://doi.org/10.1080/14680629.2013.866155.   DOI
24 Ioannides, A.M. and Peng, J. (2004), "Finite element simulation of crack growth in concrete slabs: Implications for pavement design", Proceedings of the Fifth International Workshop on Fundamental Modeling of Concrete Pavements, Istanbul, Turkey, April.
25 Kim, H.B. and Lee, S.H. (2002), "Reliability-based design model applied to mechanistic empirical pavement design", KSCE J. Civil Eng., 6(3), 263-272. https://doi.org/10.1007/BF02829149.   DOI
26 Kumar, S., Singh, I.V. and Mishra, B.K. (2014), "XFEM simulation of stable crack growth using J-R, curve under finite strain plasticity", Int. J. Meth. Mater. Des., 10(2), 165-177. https://doi.org/10.1007/s10999-014-9238-1.   DOI
27 Modarres, A. and Shabani, H. (2015), "Investigating the effect of aircraft impact loading on the longitudinal top-down crack propagation parameters in asphalt runway pavement using fracture mechanics", Eng. Fract. Mech., 150, 28-46. https://doi.org/10.1016/j.engfracmech.2015.10.024.   DOI
28 Zi, G. and Belytschko, T. (2010), "New crack-tip elements for XFEM and applications to cohesive cracks", Int. J. Numer. Meth. Eng., 57(15), 2221-2240. ttps://doi.org/10.1002/nme.849.   DOI
29 Long, G., Gao, Y. and Xie, Y. (2015), "Designing more sustainable and greener self-compacting concrete", Constr. Build. Mater., 84, 301-306. https://doi.org/10.1016/j.conbuildmat.2015.02.072.   DOI
30 Merhej, T. and Feng, D.C. (2011), "Parameter sensitivity analysis of airport rigid pavement thickness using FAARFIELD program", Adv. Mater., 243-249, 4068-4074. https://doi.org/10.4028/www.scientific.net/AMR.243-249.4068.
31 Najim, K.B. (2012), "Mechanical and dynamic properties of selfcompacting crumb rubber modified concrete", Constr. Build. Mater., 27(1), 521-530. https://doi.org/10.1016/j.conbuildmat.2011.07.013.   DOI
32 Ooi, E.T. and Yang, Z.J. (2010), "A hybrid finite element-scaled boundary finite element method for crack propagation modelling", Comput. Method. Appl. M., 199(17-20), 1178-1192. https://doi.org/10.1016/j.cma.2009.12.005.   DOI
33 Qing, L., Shi, X., Mu, R. and Cheng, Y. (2018), "Determining tensile strength of concrete based on experimental loads in fracture test", Eng. Fract. Mech., 202, 87-102. https://doi.org/10.1016/j.engfracmech.2018.09.017.   DOI
34 Sallier, L. and Forquin, P. (2012), "On the use of Hillerborg regularization method to model the softening behaviour of concrete subjected to dynamic tensile loading", E. EPJ-Spec. Topic., 206(1), 97-105. https://doi.org/10.1140/epjst/e2012-01591-5.
35 Shah, S.P. (1990), "Determination of fracture parameters (KICS and CTODC) of ordinary concrete using three-point bend tests", Mater. Struct., 23(6), 457-460. https://doi.org/10.1007/BF02472029.   DOI
36 Sukontasukkul, P. and Chaikaew, C. (2006), "Properties of concrete pedestrian block mixed with crumb rubber", Constr. Build. Mater., 20(7), 450-457. https://doi.org/10.1016/j.conbuildmat.2005.01.040.   DOI
37 Belytschko, T., Gracie, R. and Ventura, G. (2009), "TOPICAL REVIEW: A review of extended/generalized finite element methods for material modeling", Model. Simul. Mater. SC., 17(4).
38 Bu, J.W., Chen, X.D., Liu, S.S., Li, S.T. and Shen, N. (2018), "Experimental study on the dynamic behavior of pervious concrete for permeable pavement", Comput. Concrete, 22(3), 291-303. https://doi.org/10.12989/cac.2018.22.3.291.   DOI
39 Singh, I.V., Mishra, B.K., Bhattacharya, S. and Patil, R.U. (2012), "The numerical simulation of fatigue crack growth using extended finite element method", Int. J. Fatig., 36(1), 109-119. https://doi.org/10.1016/j.ijfatigue.2011.08.010.   DOI
40 Skarzynski, L., Nitka, M. and Tejchman, J. (2015), "Modelling of concrete fracture at aggregate level using FEM and DEM based on X-ray ${\mu}CT$ images of internal structure", Eng. Fract. Mech., 147, 13-35. https://doi.org/10.1016/j.engfracmech.2015.08.010.   DOI
41 Reda Taha, M.M., El-Dieb, A.S., Abd El-Wahab, M.A. and Abdel-Hameed, M.E. (2008), "Mechanical, fracture, and microstructural investigations of rubber concrete", J. Mater. Civil Eng., 20(10), 640-649. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:10(640).   DOI
42 Tao, M. (2017), "Application of waste rubber asphalt mixture in the pavement maintenance", Transport. Sci..
43 Trivedi, N. and Singh, R.K. (2015), "Chattopadhyay, Investigation on fracture parameters of concrete through optical crack profile and size effect studies", Eng. Fract. Mech., 147, 119-139. https://doi.org/10.1016/j.engfracmech.2015.08.027.   DOI
44 Turgut, P. and Yesilata, B. (2008), "Physico-mechanical and thermal performances of newly developed rubber-added bricks", Energy Build., 40(5), 679-688. https://doi.org/10.1016/j.enbuild.2007.05.002.   DOI
45 Ulfkjaer, J.P., Hansen, L.P., Qvist, S. and Madsen, S.H. (1996), "Fracture energy of ordinary concrete beams at different rates of loading", Struct. Shock Impact IV., 25, 1-11. https://doi.org/10.2495/SUSI960381.
46 Venkateswara, R.S., Seshagiri, R.M.V. and Ramaseshu, D. Rathish, K.P. (2012), "Durability performance of selfcompacting concrete", Biomed. Chromatogr., 16(1), 31-40. https://doi.org/10.1016/j.conbuildmat.2012.07.049.   DOI