• Title/Summary/Keyword: Pavement design

Search Result 457, Processing Time 0.215 seconds

Experimental Study on Rainfall Runoff Reduction Effects by Permeable Polymer Block Pavement (투수성 폴리머 블록 포장에 의한 우수 유출 저감 효과에 관한 실험적 연구)

  • Sung, Chan-Yong;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.157-166
    • /
    • 2012
  • Most of the roads are paved with impermeable materials such as asphalt concrete and cement concrete, and in the event of heavy rainfall, rainwater directly flows into river through a drainage hole on the pavement surface. This large quantity of rainwater directly spilled into the river frequently leads to the flooding of urban streams, damaging lowlands and the lower reaches of a river. In recent years there has been a great deal of ongoing research concerning water permeability and drainage in pavements. Accordingly, in this research, a porous polymer concrete was developed for permeable pavement by using unsaturated polyester resin as a binder, recycled aggregate as coarse aggregate, fly ash and blast furnace slag as filler, and its physical and mechanical properties were investigated. Also, 3 types of permeable polymer block by optimum mix design were developed and rainfall runoff reduction effects by permeability pavement using permeable polymer block were analyzed based on hydraulic experimental model. The infiltration volume, infiltration ratio, runoff initial time and runoff volume in permeability pavement with permeable polymer block of $300{\times}300{\times}80$ mm were evaluated for 50, 100 and 200mm/hr rainfall intensity.

Development of Truck Axle Load Distribution Model using WIM Data (WIM 자료를 활용한 화물차 축하중 분포 모형 개발)

  • Lee, Dong Seok;Oh, Ju Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.821-829
    • /
    • 2006
  • Traffic load comprise primary input to pavement design causing pavement damage. therefore it should be proceeded suitable traffic load distribution modeling for pavement design and analysis. Traffic load have been represented by equivalent single axle loads (ESALs) which convert mixed traffic stream into one value for design purposes. But there are some limit to apply ESALs to other roads because it is empirical value developed as part of the original AASHO(American Association of State Highway Officials) road test. There have been many efforts to solve these problems. Several leading country have implemented M-E(Mechanistic-Empirical) design procedures based on mechanical concept. As a result, they established traffic load quantification method using load distribution model known as Axle Load Spectra. This paper details Axle Load Spectra and presents axle load distribution model based on normal mixture distribution function using truck load data collected by WIM system installed in national highway. Axle load spectra and axle load distribution model presented in this paper could be useful for basic data when making traffic load quantification plan for pavement design, overweight vehicle permit plan and pavement maintenance cost plan.

Study on the Base and Subbase Method of Agricultural Road -On the Resilient Modulus Characteristics of the Subgrade and Cement Treated Base- (농도의 기층 및 보조기층 공법연구 -노상 및 시멘트 안정 처리층의 Mr 특성을 중심으로-)

  • 도덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.2
    • /
    • pp.66-81
    • /
    • 1989
  • The characteristics of resilient modulus(Mr) which dominates the life of pavement and the design of pavement were investigated on the test specimens which were cement treated and non-treated of the three different soil types. The results are summarized as follows : 1. The resilient modulus was decreased by increasing the cyclic deviator stress ($\sigma$d) , especially the resilient modulus was gradually decreased or sometimes increased when the value of ad was greater than 0.75- 1. 0kg/cm$^2$. 2. The resilient modulus was increased by increasing the homogeneous confined stress ($\sigma$do) and such phenomena were distinct on the coarse soils. 3. The resilient modulus was increased by increasing the ratio of confined stress(Kc), and this phenomena were eminent on the coarse soils too, and the higher permanent strain was showed by increasing the value of Kc. 4. In the drained cyclic triaxial compression test, the value of ad, Kc, and (Oho) was introduced by the following interrelated equations which were similar to the Mr model of Cole. Kcn/Mr=K1(J$_2$/ $\tau$oct)K2 ............. (coarse soli) Mcn/Mr=K3($\sigma$dp/ $\tau$f)k4 ...............(fine soils) 5. The stress path was not much affected by the value of Mr, however, moisture content, dry desity, and contant of fines affected the value of Mr. 6. In the soil-cement specimens, the resilient compression strain($\varepsilon$d) was decreased by the increment of the $\sigma$ho, and Mr was decreased by increasing the $\sigma$d 7. In the flexible pavement. the cement treated layer should be designed not to fail by the fatigue before the designed traffic load, and actually the pavement could cover the traffic load to a certain extent under the post-crack phase, therefore farther studies on this phenomena' are required in the design analysis. 8. The finite element computer program (ANALYS) was used for displacement analysis of pavement containing the cement-treated layer, The result showed that the program used for this analysis was proved to be usable.

  • PDF

Initial Performance Evaluation of Fine-size Exposed Aggregate PCC Pavement by Experimental Construction (시험시공을 통한 소입경 골재노출 콘크리트포장의 초기 공용성 평가)

  • Kim, Young-Kyu;Choi, Don-Hwa;Lee, Seung-Woo;Kim, Hyung-Bae
    • International Journal of Highway Engineering
    • /
    • v.12 no.1
    • /
    • pp.87-98
    • /
    • 2010
  • Surface of fine-size exposed aggregate Portland cement concrete pavements is consists of exposed coarse aggregate by removing upper 2~3mm mortar of concrete slab. Fine-size exposed aggregate PCC pavements have advantages of maintaining low-noise and adequate skid-resistance level during the performance period. In order to provide the successful exposed concrete aggregate pavement, uniform distribution of the coarse aggregate on pavement surface through adequate the mix design and exposing method. In this study, evaluated initial performance of fine-size exposed aggregate PCC pavement by experimental construction. And it was known that fine-size exposed aggregate concrete pavement which can reduce the noise and maintain the adequate level of skid resistance and strength.

Estimation of Bearing Capacity of Subbase and Subgrade Using Pavement Dynamic Cone Penetrometer (포장동적관입시험기(PDCP)에 의한 보조기층 및 노상 지지력 측정)

  • Roo, Myung-Chan
    • International Journal of Highway Engineering
    • /
    • v.5 no.1 s.15
    • /
    • pp.35-45
    • /
    • 2003
  • This paper presents a theoretical approach for estimation of CBR-value of subbase course and subgrade using a portable pavement dynamic cone penetrometer(PDCP). The PDCP used in this paper was based on a design from South Africa and extensive studies by Kleyn(1982) and more recently by Liveneh and Ishai(1987) and Chua(1988). To date, California Bearing Ratio[CBR] value was studied mainly for application of pavement structural design. This study was initiated to develop a method of obtaining the in situ CBR-values of subbase and subgrade for the structural evaluation of pavements in the swift and inexpensive manner. PDCP tests were implemented at 20 different kinds of soil samples in the lab and test results were analysed by a theoretical approach introduced. The procedure presented provides acceptable and promising results.

  • PDF

A Study on the Effect of Micro Surfacing Pavement on Noise Reductions (마이크로 서피싱 포장의 도로 소음 저감 효과 연구)

  • Kim, Nakseok;Jo, Nam June
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.1
    • /
    • pp.27-35
    • /
    • 2012
  • The main objective of this paper is to evaluate the field applications and the noise reductions of micro surfacing pavement, which is often used to reduce environmental problems. A traffic noise mechanism was analyzed and a modified mix design method was proposed for nighttime constructions. Results on noise measurements using the statistical pass-by method showed noise reductions of 2.0 to 7.1 dB were observed. In addition, results on noise measurements using the close proximity method demonstrated that noise reductions of 5.6 to 6.7 dB were recorded under vehicle speed of 80km/h. The noise measurements revealed that the close proximity method was more stable than the statistical pass-by method. As a result, the effect of micro surfacing pavement on noise reductions was proved through the research. It is considered that the micro surfacing pavement method could be used as a preventive maintenance method and a comfortable noise reducing pavement technique.

A Study for Joint Freezing in Concrete Pavement (콘크리트포장의 줄눈의 잠김에 대한 연구)

  • Lee, Seung-Woo
    • International Journal of Highway Engineering
    • /
    • v.3 no.1 s.7
    • /
    • pp.165-176
    • /
    • 2001
  • Joints in jointed concrete Pavement are designed to control against randomly occurred cracks within slabs, which may be caused by temperature or moisture variation. The advantage of these artificial cracks (joints) over naturally occurred cracks are easy access of protections, such as installation of joint seal and load transfer mechanism. The potential benefits of joint seals are to prevent infiltration of surface water through the joint into underlying soil and intrusion of incompressible materials (debris, fine size aggregate) in to the joint, which may prevent weakening of underlying soils and spallings due to excessive compressive stress, respectively. For the adequate design of joint seal, horizontal variation of joint widths (horizontal joint movements) are essential inputs. Based on long-term in-situ joint movement data of sixteen jointed concrete pavement sections in Long Term Performance Pavement Seasonal Monitoring Program (LTPP SMP), it was indicated that considerable Portion of joints showed no horizontal movements with change in temperature. This Phenomenon is called 'Joint Freezing'. Possible cause for joint freezing is that designed penetrated cracks do not occur at a joint. In this study, a model for the prediction of the ratio of freezing joints in a particular pavement sections is proposed. In addition, possible effects of joint freezing against pavement performance are addressed.

  • PDF

A Study on the Damage level of Pavement For The Landscape Urban Community Parks - In case of Dukjin, Choongang, and Dosan Park - (도시 근린 공원내 조경 포장면의 손상 정도에 관한 연구 -덕진(전주), 중앙(청주), 도산(서울) 공원을 중심으로-)

  • 신병철;권상준
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.24 no.3
    • /
    • pp.96-108
    • /
    • 1996
  • This study aimed at choosing the urban community parks such as D Kjin, Chungang, Dosan Park as the target place for this study, and at analyzing the damage level of the pavement surfaces focusing on the spaces and the materials. We devided the damage level within $1.5\times$1.5m grid int the grade from one to five points, and made use of the method of giving marks to get hold of the damage level of the pavement surfaces. Especially we took and analyze Duncan test for the spaces suffering severe damage. The result is as follows : 1. The damage of unenenness turned out to be a most excessive damage in the damage level according to the pavement materials in case of D kjin, and Chunggnag Park. Especially the concrete blocks proved to be the exessive damage in comparison with the other pavement materials, and the demolitional damage of the damage types to the most severe damage. The corner damage turned relatively out to be a heavy damage in case of Dosan Park in Seoul. 2. In the event of the damage level of pavement surfaces according to the spaces, the space which was made the more use of and which was the more concentrated, turned out to be the degree of the more excessive damage. 3. We took the Duncan test to verify the deference of the damage type between the spaces and the pavement materials of the target places for survey. The result of verification was that there was no difference of the damage type between the corner and block damage itself in case of the enterance area and the square of D kjin Park in Ch nju, and that the damage level of the pavement materials proved to be the more execssive damage than that of the spaces. The corner damage of Chungang Park in Hj ngju, showed the same result as D kjin Park in Ch nju and the uneveness didn't have any difference of damage type in all spaces. In case of Dosan in Seoul, the damage of crevice, demolition, and pumping didn't have any difference of damage type and the damage of the cross area was the most high. In conclusion, we proposed that we should get hold of whether the cause of pavement damage is caused by the defect of materials of by the construction problem including the foundation, or the unsuitableness of the method for using the pavement materials, and also that we should take a sensus of the user type and should decide a suitable design load and the necessary thickness of the pavement materials. In this study, not only we aimed at the external damage of the materials, but we tried to propose rather reasonable and developed construction method by studying the material experiment, the foundation state, and the type of using the spaces and materials, and by examining into the fundamental damaged cause.

  • PDF

Evaluation of Interlayer Shear Properties and Bonding Strengths of a Stress-Absorbing Membrane Interlayer and Development of a Predictive Model for Fracture Energy (덧씌우기 응력흡수층에 대한 전단, 부착강도 평가 및 파괴에너지 예측모델 개발)

  • Kim, Dowan;Mun, Sungho;Kwon, Ohsun;Moon, Kihoon
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.87-95
    • /
    • 2018
  • PURPOSES : A geo-grid pavement, e.g., a stress-absorbing membrane interlayer (SAMI), can be applied to an asphalt-overlay method on the existing surface-pavement layer for pavement maintenance related to reflection cracking. Reflection cracking can occur when a crack in the existing surface layer influences the overlay pavement. It can reduce the pavement life cycle and adversely affect traffic safety. Moreover, a failed overlay can reduce the economic value. In this regard, the objective of this study is to evaluate the bonding properties between the rigid pavement and a SAMI by using the direct shear test and the pull-off test. The predicted fractural energy functions with the shear stress were determined from a numerical analysis of the moving average method and the polynomial regression method. METHODS : In this research, the shear and pull-off tests were performed to evaluate the properties of mixtures constructed using no interlayer, a tack-coat, and SAMI with fabric and without fabric. The lower mixture parts (describing the existing pavement) were mixed using the 25-40-8 joint cement-concrete standard. The overlay layer was constructed especially using polymer-modified stone mastic asphalt (SMA) pavement. It was composed of an SMA aggregate gradation and applied as the modified agent. The sixth polynomial regression equation and the general moving average method were utilized to estimate the interlayer shear strength. These numerical analysis methods were also used to determine the predictive models for estimating the fracture energy. RESULTS : From the direct shear test and the pull-off test results, the mixture bonded using the tack-coat (applied as the interlayer between the overlay layer and the jointed cement concrete) had the strongest shear resistance and bonding strength. In contrast, the SAMI pavement without fiber has a strong need for fractural energy at failure. CONCLUSIONS : The effects of site-reflection cracking can be determined using the same tests on cored specimens. Further, an empirical-mechanical finite-element method (FEM) must be done to understand the appropriate SAMI application. In this regard, the FEM application analy pavement-design analysis using thesis and bonding property tests using cored specimens from public roads will be conducted in further research.

Estimating Concrete Compressive Strength Using Wave Propagation Method (Wave Propagation 기법을 이용한 콘크리트의 압축강도 추정)

  • Kwon, Soo-Ahn;An, Ji-Hwan;Suh, Young-Chan;Cho, Yong-Joo
    • International Journal of Highway Engineering
    • /
    • v.7 no.3 s.25
    • /
    • pp.63-69
    • /
    • 2005
  • For many years, the compressive strength of concrete has been regarded as an important index in determining concrete pavement quality. The compressive strength of the sample cores from the field has been used as quality index of concrete pavement. However, this process is time consuming and requires a lot of labor. Recently, the M-E Design Methodology in the pavement design based on the elastic modulus has been adopted. Therefore, several NDT methodologies have been adopted for QA/QC in the field and for the pavement design. Among various NDT methods, the wave propagation method can be used to measure the elastic modulus of concrete because the wave velocity is directly related to the elastic modulus. Therefore, in this study the wave propagation method was used for estimating the concrete modulus. The relationship between the compressive strength measured in he laboratory and the elastic modulus measured by the wave propagation method was analyzed, and the compressive strength was estimated from the elastic modulus for various mix types. The results showed that the relationship between the elastic modulus and the compressive strength was observed and the relationship varied depending on the aggregate types.

  • PDF