• Title/Summary/Keyword: Patterning

Search Result 1,115, Processing Time 0.03 seconds

Replication Characteristics of Micro-Patterns according to the Vibration Transmission Direction in the Ultrasonic Imprinting Process (초음파 성형시 진동전달 방향에 따른 미세패턴의 전사특성 고찰)

  • Seo, Young-Soo;Lee, Ki-Yeon;Cho, Young-Hak;Park, Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.11
    • /
    • pp.1256-1263
    • /
    • 2012
  • The present study covers the ultrasonic patterning process to replicate micro-patterns on a polymer substrate. The ultrasonic patterning process uses ultrasonic waves to generate frictional heat between an ultrasonic horn and the polymer substrate, from which the surface region of the polymer substrate is softened sufficiently for the replication of micro-patterns. The ultrasonic patterning process can divided into two categories according to the direction of vibration transmission: direct patterning and indirect patterning. The direct patterning uses a patterned horn, and the ultrasonic vibration is transferred directly from the patterned horn to the substrate. On the contrary, the indirect patterning process uses a plain horn, and the micro-patterns are engraved on a mold that is located below the substrate. Thus, the micro-patterns are replicated as an indirect manner. In this study, these direct and indirect patterning processes are compared in terms of the replication characteristics. Additionally, the possibility of double-side patterning is also discussed in comparison with the conventional single-side patterning process.

Surface Patterning and Characterization of Food Packaging Films Using Femtosecond Laser (펨토초 레이저를 이용한 식품포장 필름의 표면 패터닝 및 특성)

  • Youngjin Cho
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.2
    • /
    • pp.111-118
    • /
    • 2023
  • In this study, the feasibility of laser patterning on the surface of food packaging polymer film was confirmed, and the surface patterning process conditions of femtosecond laser were established. In addition, it was proved that the surface properties of the film can be changed and controlled through the fabrication of various patterned films on the surface of food packaging films such as HDPE, PP, and PET. Various patterned surfaces, including large-scale circular patterns induced by a single femtosecond laser pulse, roughness patterns achieved by overlapping single pulses by 30%, straight line patterns, roughness patterns obtained by overlapping straight line patterns, and grid patterns formed by intersecting straight line patterns were fabricated. The characteristics of the patterned HDPE, PP, and PET films, based on the surface pattern structure and size, were analyzed using SEM, AFM, and contact angle measurements. Compared to the surface of each control film without femtosecond laser patterning, the contact angles of the surfaces of large-area circular patterning HDPE and PP films, large-area roughness patterning HDPE and PP films by overlapping 30% of single pulses, and large-area roughness patterning PET film by overlapping rectilinear patterning were in the range of 27.1-37.5 degree. This indicated that the HDPE, PP, and PET films became more hydrophilic after patterning. On the other hand, the HDPE film patterned with a large-scale grid pattern exhibited a contact angle of 120.4 degree, indicating that the HDPE film became more hydrophobic after patterning. Therefore, films that have been changed to hydrophilic surfaces through patterning can be used in anti-fouling applications where proteins, cells, viruses, and other food materials do not adhere or are easily detached. In addition, if a superhydrophobic surface of 150 degrees or more is fabricated through more precise lattice patterning in the future, it will be possible to use it for superhydrophobic surface applications such as self-cleaning.

Micro Patterning Using Near-Field Coupled Nano Probe Laser Photo Patterning Of Chloromethylated Polyimide Thin Film (클로로메틸 폴리이미드(CMPI) 박막과 근접장 나노 프로브 레이저 패터닝을 이용한 미세 형상 가공 기술)

  • 최무진;장원석;김재구;조성학;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.369-372
    • /
    • 2004
  • Photo-induced surface alignment is charming as a non-contact photo-patternable alignment technology which can be used in the next generation of displays, such as large area, multi-domain. For decades, many polymer film have been investigated and developed to be used in the photo alignment. Among these photoreactive materials, recently developed polyimide, Chloromethylated Polyimide(CMPI) now became the focus of interests in this area because of its high photosensitivity and superior thermal stability. In this report, we present micro patterning method to form the nanoscale structure by Mask-Less laser patterning using this CMPI film and NSOM probe.

  • PDF

A Study of Laser Patterning for $SiO_2$ Thin Film of Crystalline Solar Cells (결정질 태양전지 $SiO_2$ 박막의 Laser Patterning에 관한 연구)

  • Lee, C.S.;Lee, J.C.;Kim, K.S.;Kang, H.S.
    • Laser Solutions
    • /
    • v.14 no.3
    • /
    • pp.1-6
    • /
    • 2011
  • Globally, the interest of renewable energy has become an upsurge. Especially, the solar industry is the one which is getting rapid growth rate. Many of researchers have been undertaking to improve the efficiency of solar cell to accomplish grid parity. The most of research has been concentrated on two methods, one on the selective emitter and the other is on LBSF (Local Back Surface Field) formation. Laser patterning will be needed to eliminate the thin film to form selective emitter and LBSF of solar cell. This paper reports some experimental results in laser patterning process for high-efficiency crystalline solar cell manufacturing. The experimental results indicate that the patterning quality depends on the average power and repetition rate of laser. The experimental results prove that the laser patterning process is an advantageous method to improve the efficiency of solar cell.

  • PDF

Comprehensive Performance Analysis of Interconnect Variation by Double and Triple Patterning Lithography Processes

  • Kim, Youngmin;Lee, Jaemin;Ryu, Myunghwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.824-831
    • /
    • 2014
  • In this study, structural variations and overlay errors caused by multiple patterning lithography techniques to print narrow parallel metal interconnects are investigated. Resistance and capacitance parasitic of the six lines of parallel interconnects printed by double patterning lithography (DPL) and triple patterning lithography (TPL) are extracted from a field solver. Wide parameter variations both in DPL and TPL processes are analyzed to determine the impact on signal propagation. Simulations of 10% parameter variations in metal lines show delay variations up to 20% and 30% in DPL and TPL, respectively. Monte Carlo statistical analysis shows that the TPL process results in 21% larger standard variation in delay than the DPL process. Crosstalk simulations are conducted to analyze the dependency on the conditions of the neighboring wires. As expected, opposite signal transitions in the neighboring wires significantly degrade the speed of signal propagation, and the impact becomes larger in the C-worst metals patterned by the TPL process compared to those patterned by the DPL process. As a result, both DPL and TPL result in large variations in parasitic and delay. Therefore, an accurate understanding of variations in the interconnect parameters by multiple patterning lithography and adding proper margins in the circuit designs is necessary.

Nano Patterning Functional Polymers Using Nano-imprint Technique

  • Gwon, Hyeon-Geun;Lee, Gyu-Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.430.2-430.2
    • /
    • 2014
  • Previous studies to enhance optical properties of opto-electronic devices involve patterning of inorganic materials. Patterning of inorganic material usually encompasses vacuum process that hinders productivity and increases cost. In this research, we successfully formed nano patterns with polymer matrix and fabricated photonic crystals. This process is anticipated to increase the performance of opto-electronic devices without any vacuum process. Moreover, nano imprint technology reduces cost and bolsters productivity.

  • PDF

Development of Nanowire Patterning Process Using Microcontact Printing (마이크로컨택 프린팅을 이용한 나노와이어 패터닝 기술 개발)

  • Jo, Sungjin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.9
    • /
    • pp.571-575
    • /
    • 2016
  • Recently, there has been much focus on the controlled alignment and patterning process of nanowires for nanoelectronic devices. A simple and effective method for patterning of highly aligned nanowires using a microcontact printing technique is demonstrated. In this method, nanowires are first directionally aligned by contact printing, following which line and space micropatterns of nanowire arrays are accomplished by microcontact printing with a micro patterned NOA mold.

Novel Patterning of Gold Using Spin-Coatable Gold Electron-Beam Resist

  • Kim, Ki-Chul;Lee, Im-Bok;Kang, Dae-Joon;Maeng, Sung-Lyul
    • ETRI Journal
    • /
    • v.29 no.6
    • /
    • pp.814-816
    • /
    • 2007
  • Conventional lithography methods of gold patterning are based on deposition and lift-off or deposition and etching. In this letter, we demonstrate a novel method of gold patterning using spin-coatable gold electron-beam resist which is functionalized gold nanocrystals with amine ligands. Amine-stabilized gold electron beam resist exhibits good sensitivity, 3.0 mC/$cm^2$, compared to that of thiol-stabilized gold electron beam resists. The proposed method reduces the number of processing steps and provides greater freedom in the patterning of complex nanostructures.

  • PDF

A study on plasma-assisted patterning and doubly deposited cathode for improvement of AMOLED common electrode IR drop

  • Yang, Ji-Hoon;Kwak, Jeong-Hun;Lee, Chang-Hee;Hong, Yong-Taek
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.481-484
    • /
    • 2008
  • In order to reduce IR drop through common electrode in AMOLED, we propose a novel method to form electrical contact between highly-conductive bus lines and common electrode by using a plasma-assisted patterning of OLED layers and double deposition of the common electrode. Plasma-assisted patterning effects on OLED performance and degradation have been investigated. This patterning method caused turn-on voltage decrease, current flow increase at the same applied OLED voltages, quantum efficiency decrease, and rapid degradation at early stage during the lifetime test. However, comparable 70% luminance lifetime were obtained for both patterned and non-patterned OLEDs.

  • PDF