• Title/Summary/Keyword: Patterned matrix

Search Result 29, Processing Time 0.027 seconds

SOME PROPERTIES OF A CERTAIN PATTERNED MATRIX

  • Park, Jong-Tae
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.485-493
    • /
    • 2004
  • This paper presents the interesting properties of a certain patterned matrix that plays an significant role in the statistical analysis. The necessary and sufficient condition on the existence of the inverse of the patterned matrix and its determinant are derived. In special cases of the patterned matrix, explicit formulas for its inverse, determinant and the characteristic equation are obtained.

On Certain Pattermed Matrices with Statistical Applications

  • Park, Jong-Tae;Kang, Chul;Park, Young-Hee;Kim, Byung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.1
    • /
    • pp.89-98
    • /
    • 1995
  • This paper presents the interesting properties of a certain patterned matrix that plays an significant role in the multi-way balanced designs. The necessary and sufficient condition on the existence of the inverse of the patterned matrix and its determinant are described. In special cases of the pattermed matrix, explicit formulas for its inverse, determinant and the characteristic equation are obtained.

  • PDF

Real-time FRET imaging of cytosolic FAK signal on microwavy patterned-extracellular matrix (ECM) (미세파상 패턴 ECM 에서 세포질 FAK 신호의 실시간 FRET 이미징)

  • Suh, Jung-Soo;Jang, Yoon-Kwan;Kim, Tae-Jin
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Human mesenchymal stem cells (hMSC) are multipotent stromal cells that have great potential to differentiate into a variety of cell types such as osteocytes, chondrocytes, and myocytes. Although there have been many studies on their clinical availability, little is known about how intracellular signals can be modulated by topographic features of the extracellular matrix (ECM). In this study, we investigated whether and how microwavy-patterned extracellular matrix (ECM) could affect the signaling activity of focal adhesion kinase (FAK), a key cellular adhesion protein. The fluorescence resonance energy transfer (FRET)-based FAK biosensor-transfected cells are incubated on microwavy-patterned surfaces and then platelet derived growth factor (PDGF) are treated to trigger FAK signals, followed by monitoring through live-cell FRET imaging in real time. As a result, we report that PDGF-induced FAK was highly activated in cells cultured on microwavy-patterned surface with L or M type, while inhibited by H type-patterned surface. In further studies, PDGF-induced FAK signals are regulated by functional support of actin filaments, microtubules, myosin-related proteins, suggesting that PDGF-induced FAK signals in hMSC upon microwavy surfaces are dependent on cytoskeleton (CSK)-actomyosin networks. Thus, our findings not only provide new insight on molecular mechanisms on how FAK signals can be regulated by distinct topographical cues of the ECM, but also may offer advantages in potential applications for regenerative medicine and tissue engineering.

Evaluation of the periodontal regenerative properties of patterned human periodontal ligament stem cell sheets

  • Kim, Joong-Hyun;Ko, Seok-Yeong;Lee, Justin Ho;Kim, Deok-Ho;Yun, Jeong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.6
    • /
    • pp.402-415
    • /
    • 2017
  • Purpose: The aim of this study was to determine the effects of patterned human periodontal ligament stem cell (hPDLSC) sheets fabricated using a thermoresponsive substratum. Methods: In this study, we fabricated patterned hPDLSC sheets using nanotopographical cues to modulate the alignment of the cell sheet. Results: The hPDLSCs showed rapid monolayer formation on various surface pattern widths. Compared to cell sheets grown on flat surfaces, there were no significant differences in cell attachment and growth on the nanopatterned substratum. However, the patterned hPDLSC sheets showed higher periodontal ligamentogenesis-related gene expression in early stages than the unpatterned cell sheets. Conclusions: This experiment confirmed that patterned cell sheets provide flexibility in designing hPDLSC sheets, and that these stem cell sheets may be candidates for application in periodontal regenerative therapy.

Self-Organization and Phase Separation for Patterned Structures

  • Jeong, Un-Ryong;Park, Min-U;Park, Chu-Jin;Hyeon, Dong-Chun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.8.2-8.2
    • /
    • 2011
  • This talk demonstrates diverse patterned structures utilizing in-situ self-organization and phase separation of the materials into an ordered fashion. The patterned structures in this talk include electrospun nanofibers and electrosprayed microparticles embedding small particles. The positions of the small particles are in-situ controlled during the electrohydrodynamic process by the interaction with the polymer matrix. Another topic of the talk includes selective deposition of spin-coated materials on a corrugated surface that was prepared by buckling of polymer thin films. Solution are strong tendency to be positioned in the trench area of the surface, which facilitates the fabrication of micropatterns of diverse materials.

  • PDF

Simplified Process for Passive Matrix OLEDs

  • Lee, Seung-Jun;Sin, Yun-Su;Im, Dae-U;Yu, Jae-Hun;Choe, Gyeong-Hui
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.02a
    • /
    • pp.397-398
    • /
    • 2008
  • We have developed simplified processes for the formation of insulators, cathode separators and bus electrodes in PMOLEDs. The insulators and cathode separators are patterned simultaneously by a single layer of image reversal photoresist. And, the bus electrodes of low resistance are formed by the cathode separator and cathode metal. Using these simplified processes, we fabricated 1.17" $96{\times}RGB{\times}96$ panels and analyzed their performance and reliability.

  • PDF

Mechanical/Biochemical Analysis of Cell Adhesion Strengthening (세포흡착 거동의 기계적/생화학적 분석)

  • Shin, Heung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1455-1457
    • /
    • 2008
  • Cell adhesion is a coordinated process involving initial binding of integrin receptors to extracellular matrix (ECM), recruitment of adhesion proteins, and focal adhesion assembly. The formation of mechanically stable focal adhesion assembly of cells within surrounding ECM is a key parameter to direct numerous cellular functions including cell migration, differentiation, and apotosis. With current cell adhesion assays, it is difficult to understand contributions of each coordinated event on evolution of cell adhesion strengthening since cells spontaneously spread upon their adhesion to the substrate, thus remodeling their cytoskeletal structure. In this presentation, novel approaches for analysis of cell adhesion strengthening process based on the combination of mechanical device, micro-patterned substrates, and molecular biological techniques will be discussed.

  • PDF

Method to control the Sizes of the Nanopatterns Using Block Copolymer (블록 공중합체를 이용한 나노패턴의 크기제어방법)

  • Kang, Gil-Bum;Kim, Seong-Il;Han, Il-Ki
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.5
    • /
    • pp.366-370
    • /
    • 2007
  • Nano-scopic holes which are distributed densely and uniformly were fabricated on $SiO_2$ surface. Self-assembling resists were used to produce a layer of uniformly distributed parallel poly methyl methacrylate (PMMA) cylinders in a polystyrene (PS) matrix. The PMMA cylinders were degraded and removed by acetic acid rinsing. Subsequently, PS nanotemplates were fabricated. The patterned holes of PS template were approximately $8{\sim}30\;nm$ wide, 40 nm deep, and 60 nm apart. The porous PS template was used as a dry etching mask to transfer the pattern of PS template into the silicon oxide thin film during reactive ion etching (RIE) process. The sizes of the patterned holes on $SiO_2$ layer were $9{\sim}33\;nm$. After pattern transfer by RIE, uniformly distributed holes of which size were in the range of $6{\sim}22\;nm$ were fabricated on Si substrate. Sizes of the patterned holes were controllable by PMMA molecular weight.