• Title/Summary/Keyword: Pattern damage

Search Result 782, Processing Time 0.024 seconds

Damage controlled optimum seismic design of reinforced concrete framed structures

  • Gharehbaghi, Sadjad
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.53-68
    • /
    • 2018
  • In this paper, an innovative procedure is proposed for the seismic design of reinforced concrete frame structures. The main contribution of the proposed procedure is to minimize the construction cost, considering the uniform damage distribution over the height of structure due to earthquake excitations. As such, this procedure is structured in the framework of an optimization problem, and the initial construction cost is chosen as the objective function. The aim of uniform damage distribution is reached through a design constraint in the optimization problem. Since this aim requires defining allowable degree of damage, a damage pattern based on the concept of global collapse mechanism is presented. To show the efficiency of the proposed procedure, the uniform damage-based optimum seismic design is compared with two other seismic design procedures, which are the strength-based optimum seismic design and the damage-based optimum seismic design. By using the three different seismic design methods, three reinforced concrete frames including six-, nine-, and twelve-story with three bays are designed optimally under a same artificial earthquake. Then, to show the effects of the uniform damage distribution, all three optimized frames are used for seismic damage analysis under a suite of earthquake records. The results show that the uniform damage-based optimum seismic design method renders a design that will suffer less damage under severe earthquakes.

Pattern of Ginseng Damage by Korean Black Chafer (Holotrichia diomphalia Bates) in Spring (참검정풍뎅이에 의한 춘기의 인삼 피해 양상)

  • 김기황
    • Korean journal of applied entomology
    • /
    • v.30 no.3
    • /
    • pp.174-179
    • /
    • 1991
  • Patterns of ginseng damage by larvae of Holotrichia diomphalia Bates in spring were investigated in 3rd year ginseng fields from 1986 to 1990. Ginseng damages were more serious in outer areas than inner areas of ginseng fields, which seemed to be due to nocturnal migration behavior of adult females. Damaged parts of 3rd year ginseng plants due to 3rd instar larvae were top, middle, bottom or whole of main roots, and rarely underground stems. Mean inhabitation depth of 3rd instar larvae were 3.2cm, 5.6cm, 6.6cm and 4.9cm in 1st, 2nd and 3rd year ginseng fields and mugwort fields, respectively. Larval feeding damage of ginseng in spring oc¬curred mainly from mid-May to early July and appeared to decrease temporarily when rainfalls increased.

  • PDF

3D finite element simulation of human proximal femoral fracture under quasi-static load

  • Hambli, Ridha
    • Advances in biomechanics and applications
    • /
    • v.1 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • In this paper, a simple and accurate finite element model coupled to quasi-brittle damage law able to describe the multiple cracks initiation and their progressive propagation is developed in order to predict the complete force-displacement curve and the fracture pattern of human proximal femur under quasi-static load. The motivation of this work was to propose a simple and practical FE model with a good compromise between complexity and accuracy of the simulation considering a limited number of model parameters that can predict proximal femur fracture more accurately and physically than the fracture criteria based models. Different damage laws for cortical and trabecular bone are proposed based on experimental results to describe the inelastic damage accumulation under the excessive load. When the damage parameter reaches its critical value inside an element of the mesh, its stiffness matrix is set to zero leading to the redistribution of the stress state in the vicinity of the fractured zone (crack initiation). Once a crack is initiated, the propagation direction is simulated by the propagation of the broken elements of the mesh. To illustrate the potential of the proposed approach, the left femur of a male (age 61) previously investigated by Keyak and Falkinstein, 2003 (Model B: male, age 61) was simulated till complete fracture under one-legged stance quasi-static load. The proposed finite element model leads to more realistic and precise results concerning the shape of the force-displacement curve (yielding and fracturing) and the profile of the fractured edge.

Femoral Fracture load and damage localization pattern prediction based on a quasi-brittle law

  • Nakhli, Zahira;Ben Hatira, Fafa;Pithioux, Martine;Chabrand, Patrick;Saanouni, Khemais
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.191-201
    • /
    • 2019
  • Finite element analysis is one of the most used tools for studying femoral neck fracture. Nerveless, consensus concerning either the choice of material characteristics, damage law and /or geometric models (linear on nonlinear) remains unreached. In this work, we propose a numerical quasi-brittle damage model to describe the behavior of the proximal femur associated with two methods to evaluate the Young modulus. Eight proximal femur finite elements models were constructed from CT scan data (4 donors: 3 women; 1 man). The numerical computations showed a good agreement between the numerical curves (load - displacement) and the experimental ones. A very encouraging result is obtained when a comparison is made between the computed fracture loads and the experimental ones ($R^2=0.825$, Relative error =6.49%). All specific numerical computation provided very fair qualitative matches with the fracture patterns for the sideway fall simulation. Finally, the comparative study based on 32 simulations adopting linear and nonlinear meshing led to the conclusion that the quantitatively results are improved when a nonlinear mesh is used.

A Comparative Study on Isomap-based Damage Localization (아이소맵을 이용한 결함 탐지 비교 연구)

  • Koh, Bong-Hwan;Jeong, Min-Joong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.278-281
    • /
    • 2011
  • The global coordinates generated from Isomap algorithm provide a simple way to analyze and manipulate high dimensional observations in terms of their intrinsic nonlinear degrees of freedom. Thus, Isomap can find globally meaningful coordinates and nonlinear structure of complex data sets, while neither principal component analysis (PCA) nor multidimensional scaling (MDS) are successful in many cases. It is demonstrated that the adapted Isomap algorithm successfully enhances the quality of pattern classification for damage identification in various numerical examples.

  • PDF

A Study on the Safety Assessment and Damage Pattern of Water Purifier Compressors (정수기용 압축기의 안전성 평가 및 소손 패턴 분석에 관한 연구)

  • Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.2
    • /
    • pp.21-25
    • /
    • 2013
  • The purpose of this study is to provide basic data for the safety assessment of a water purifier when water leaks due to inappropriate maintenance and the examination of the cause of accidents related to the leak. Due to its inspection and management by non-specialists, if a leak occurs in a water purifier with the water level controller being inclined, it may result in the failure of the compressor, power supply line, PCB, etc. The analysis of the thermal diffusion pattern of water purifier compressors using a thermal image camera shows that its maximum temperature was approximately $80^{\circ}C$. In addition, its operating current was a maximum of 13 A and the system's operating current was approximately 1.7 A after the compressor was charged. It was found that the housing type power cable cover of the compressor had the effect of preventing electric shock but has poor flame resistance. Furthermore, the performance of the overload protector, PTC relays, etc., was excellent but they have potential for problems as metallic terminals were exposed, resulting in the potential of a safety related accident. The terminals and their surface damaged by the tracking showed a trace of carbonization and the resistance between terminals was measured to be approximately $8{\Omega}$. In addition, while the tracking was proceeding, the fuse and circuit breaker installed for system protection did not operate.

Silicon Wafering Process and Fine Grinding Process Induced Residual Mechanical Damage (반도체 실리콘의 웨이퍼링 및 정밀연삭공정후 잔류한 기계 적 손상에 관한 연구)

  • O, Han-Seok;Lee, Hong-Rim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.145-154
    • /
    • 2002
  • CMP (Chemical mechanical polishing) process was used to control the fine grinding process induced mechanical damage of Cz Silicon wafer. Characterization of mechanical damage was carried out using Nomarski microscope, magic mirror and also using angle lapping and lifetime scanner evaluation after heat treatment. Magic mirror and lifetime scanner were very useful for the residual damage pattern characterization and CMP process was effective on the reduction of fine grinding induced mechanical damage.

A Vision-based Damage Detection for Bridge Cables (교량케이블 영상기반 손상탐지)

  • Ho, Hoai-Nam;Lee, Jong-Jae
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.39-39
    • /
    • 2011
  • This study presents an effective vision-based system for cable bridge damage detection. In theory, cable bridges need to be inspected the outer as well as the inner part. Starting from August 2010, a new research project supported by Korea Ministry of Land, Transportation Maritime Affairs(MLTM) was initiated focusing on the damage detection of cable system. In this study, only the surface damage detection algorithm based on a vision-based system will be focused on, an overview of the vision-based cable damage detection is given in Fig. 1. Basically, the algorithm combines the image enhancement technique with principal component analysis(PCA) to detect damage on cable surfaces. In more detail, the input image from a camera is processed with image enhancement technique to improve image quality, and then it is projected into PCA sub-space. Finally, the Mahalanobis square distance is used for pattern recognition. The algorithm was verified through laboratory tests on three types of cable surface. The algorithm gave very good results, and the next step of this study is to implement the algorithm for real cable bridges.

  • PDF

Evaluation of the Absorbing Performance of Radar-absorbing Structure with Periodic Pattern after the Low-velocity Impact (주기패턴 레이더 흡수 구조의 저속충격 후 흡수 성능 평가)

  • Joon-Hyung, Shin;Byeong-Su, Kwak
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.469-476
    • /
    • 2022
  • In this paper, the microwave absorbing characteristics after the impact of the radar-absorbing structure (RAS) consisting of periodic pattern sheet (PPS) and glass fiber-reinforced plastic (GFRP) were experimentally investigated. The fabricated RAS effectively absorbed the microwave in the X-band (8.2-12.4 GHz). In order to induce the damage to the RAS, a low-velocity impact test with various impact energy of 15, 40, and 60 J was conducted. Afterward, the impact damage was observed by using visual inspection, non-destructive test, and image processing method. Moreover, the absorbing performance of intact and damaged RAS was measured by the free-space measurement system. The experiment results revealed that the delamination damage from the impact energy of 15 J did not considerably affect the microwave absorbing performance of the RAS. However, fiber breakage and penetration damage with a relatively large damaged area were occuured when the impact energy was increased up to 40 J and 60 J, and these failures significantly degraded the microwave absorbing characteristics of the RAS.

A Study on Potential Flood Damage Classification and characteristic analysis (시군별 홍수위험잠재능 유형화 및 특성분석)

  • Kim, Soo-Jin;Eun, Sang-Kyu;Kim, Seong-Pil;Bae, Seung-Jong
    • Journal of Korean Society of Rural Planning
    • /
    • v.23 no.3
    • /
    • pp.21-36
    • /
    • 2017
  • Climate change is intensifying storms and floods around the world. Where nature has been destroyed by development, communities are at risk from these intensified climate patterns. This study was to suggest a methodology for estimating flood vulnerability using Potential Flood Damage(PFD) concept and classify city/county about Potential Flood Damage(PFD) using various typology techniques. To evaluate the PFD at a spatial resolutions of city/county units, the 20 representative evaluation indexing factors were carefully selected for the three categories such as damage target(FDT), damage potential(FDP) and prevention ability(FPA). The three flood vulnerability indices of FDT, FDP and FPA were applied for the 167 cities and counties in Korea for the pattern classification of potential flood damage. Potential Flood Damage(PFD) was classified by using grouping analysis, decision tree analysis, and cluster analysis, and characteristics of each type were analyzed. It is expected that the suggested PFD can be utilized as the useful flood vulnerability index for more rational and practical risk management plans against flood damage.