Browse > Article
http://dx.doi.org/10.12989/sem.2019.72.2.191

Femoral Fracture load and damage localization pattern prediction based on a quasi-brittle law  

Nakhli, Zahira (Laboratoire de Recherche Materiaux Mesures et Application (MMA), LR11ES25, National Institute of Sciences and Technology (INSAT))
Ben Hatira, Fafa (Laboratoire de Recherche Materiaux Mesures et Application (MMA), LR11ES25, National Institute of Sciences and Technology (INSAT))
Pithioux, Martine (Aix Marseille University, UMR CNRS 7287, (ISM) Institute of Movement Sciences)
Chabrand, Patrick (Aix Marseille University, UMR CNRS 7287, (ISM) Institute of Movement Sciences)
Saanouni, Khemais (Laboratoire des Systemes Mecaniques et d'Ingenierie Simultanee Institut Charles Delaunay)
Publication Information
Structural Engineering and Mechanics / v.72, no.2, 2019 , pp. 191-201 More about this Journal
Abstract
Finite element analysis is one of the most used tools for studying femoral neck fracture. Nerveless, consensus concerning either the choice of material characteristics, damage law and /or geometric models (linear on nonlinear) remains unreached. In this work, we propose a numerical quasi-brittle damage model to describe the behavior of the proximal femur associated with two methods to evaluate the Young modulus. Eight proximal femur finite elements models were constructed from CT scan data (4 donors: 3 women; 1 man). The numerical computations showed a good agreement between the numerical curves (load - displacement) and the experimental ones. A very encouraging result is obtained when a comparison is made between the computed fracture loads and the experimental ones ($R^2=0.825$, Relative error =6.49%). All specific numerical computation provided very fair qualitative matches with the fracture patterns for the sideway fall simulation. Finally, the comparative study based on 32 simulations adopting linear and nonlinear meshing led to the conclusion that the quantitatively results are improved when a nonlinear mesh is used.
Keywords
Sideway fall; proximal femur fracture; quasi-brittle damage; finite element analysis; fracture pattern; non-linear meshing;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Currey, J.D., (1988), "The effect of porosity and mineral content on the Young's modulus elasticity of compact bone", J. Biomech., 21, 131-139. https://doi.org/10.1016/0021-9290(88)90006-1.   DOI
2 Curtis, E.M, Moon, R.J., Harvey, N.C. and Cooper, C. (2017), "The impact of fragility fracture and approaches to osteoporosis risk assessment worldwide", Bone, 104, https://doi.org/10.1016/j.bone.2017.01.024.
3 Dannilo, C.B. and Pituba, J. (2017), "Analysis of quasi-brittle materials at mesoscopic level using homogenization model", Adv. Concrete Construct., 5(3), 221-240. https://doi.org/10.12989/acc.2017.5.3.221.   DOI
4 Dieter, H.P. and Zysset, P.K. (2009), "A comparison of enhanced continuum FE with micro FE models of human vertebral bodies", J. Biomech., 42, 455-462. https://doi.org/10.1016/j.jbiomech.2008.11.028.   DOI
5 Enns-Bray, W.S., Owoc, J.S., Nishiyama, K.K. and Boyd, S.K. (2014), "Mapping anisotropy of the proximal femur for enhanced image based finite element analysis", J. Biomech., 47(2014), 3272-3278. https://doi.org/10.1016/j.jbiomech.2014.08.020.   DOI
6 Frandsen, P.A., Andersen, E., Madsen, F. and Skjodt, T. (1988), "Garden's Classification of femoral Neck Fractures", J. Bone Joint Surg., 70B(4), 588-590. https://doi.org/10.1302/0301-620X.70B4.3403602.
7 Haider, I.T., Goldak, J. and Frei, H. (2018), "Femoral fracture load and fracture pattern is accurately predicted using a gradientenhanced quasi-brittle finite element model", Med. Eng. Phys, 55, 1-8. https://doi.org/10.1016/j.medengphy.2018.02.008.   DOI
8 Hambli, R., Bettamer, A. and Allaoui, S. (2012), "Finite element prediction of proximal femur fracture pattern based on orthotropic behavior law coupled to quasi-brittle damage", Med. Eng. Phys., 34, 202- 210.   DOI
9 Carter, D.R., and Hayes, W.C. (1977), "The compressive behavior of bones as a two-phase porous structure", J. Bone Joint Surg. Am., 59, 954-962.   DOI
10 Marco,M., Giner. E., Larrainzar, R., Caeiro, J.R., and Miguelez, M.H. (2017), "Numerical Modelling of Femur Fracture and Experimental Validation Using Bone Simulant", Ann. Biomed. Eng., 45(10), 2395-2408. https://doi.org/10.1007/s10439-017-1877-6.   DOI
11 Mariage, J.F. (2003), "Simulation numerique de l'endommagement ductile en formage de pieces massives", Ph.D. Dissertation, Universite de Technologie de Troyes, France.
12 Marigo, J. J. (1981), "Formulation of a damage law for an elastic material", Comptes Rendus, Serie II-Mecanique, Physique, Chimie, Sciences de l'Univers, Sciences de la Terre, 292(19), 1309-1312.
13 Milne, I., Robert O. Ritchie, Bhushan Lal Karihaloo (2003), Comprehensive Structural Integrity, Elsevier, The Netherlands.
14 Morgan, E.F., Bayraktar, H.H. and Keaveny, T.M. (2003), "Trabecularbonemodulus- density relationships depend on anatomic site", J. Biomech., 36, 897-904. https://doi.org/10.1016/S0021-9290(03)00071-X.   DOI
15 Saanouni, K., Forster, Ch., Ben Hatira, F. (1996), "On the Anelastic flow damage", Int. J. Damage Mech., 3(2), 140-169. https://doi.org/10.1177/105678959400300203.   DOI
16 Nakhli, Z., Ben Hatira, F., Pithioux, M. and Chabrand, P. (2017), "Dependance de la modelisation par elements finis du femur humain de la reconstruction tridimensionnelle", International Congress / Congres International Design and Modelling of Mechanical Systems Conception et Modelisation des Systemes Mecaniques, Hammamet, Tunisia, Mars.
17 Nawathe, S., Yang, H., Fields, A.J., Bouxsein, M.L. and Keaveny, T.M. (2015), "Theoretical effects of fully ductile versus fully brittle behaviors of bone tissue on the strength of the human proximal femur and vertebral body", J. Biomech., 48, 1264-1269. https://doi.org/10.1016/j.jbiomech.2015.02.066.   DOI
18 Pithioux, M., Chabrand, P., Hochard, C.H. and Champsaur, P. (2011), "Improved Femoral Neck fracture predictions using anisotropic failure criteria models", J. Mech. Med. Biol., 11(5), 1333-1346. https://doi.org/10.1142/S0219519412004478.   DOI
19 Pituba, J., Fernandes, G.R. and de Sousa Neto, E.A. (2016), "Modeling of cohesive fracture and plasticity processes in composite microstructures", J. Eng. Mech., 142(10), 1-15. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001123.
20 Pituba, J.J.C, and Lacerda, M.M.S. (2012), "Simplified damage models applied in the numerical analysis of reinforced concrete structures", Revista Ibracon de Estruturas e Materiais, 5(1), 26-37. http://dx.doi.org/10.1590/S1983-41952012000100004.   DOI
21 Sanyal, A. (2013), "Bone Strength Multi-axial Behavior - Volume Fraction, Anisotropy and Microarchitecture", Ph.D. Dissertation, University of California, Berkeley, USA.
22 Varga, P., Schwiedrzik, J., Zysset, Ph. K., Fliri-Hofmanna, L., Widmera, D., Gueorguiev, B., Blauth, M. and Windolf, M. (2016), "Nonlinear quasi-static finite element simulations predict in vitro strength of human proximal femora assessed in a dynamic sideways fall setup", J. Mech. Behav. Biomed. Mater., 57, 116-127. https://doi.org/10.1016/j.jmbbm.2015.11.026.   DOI
23 Schmidt, J., Henderson, A., Ploeg, H., Deluzio, K. and Dunbar, M. (2006), "Finite element analysis of stem dimensions in a revision total knee arthroplasty using visible human computed tomography data" 14th Annual Symposium on Computational Methods in Orthopaedic Biomechanics, Chicago IL, USA, March.
24 Tellache, M., Pithioux, M., Chabrand, P. and Hochard, C. (2009), "Femoral neck fracture prediction by anisotropic yield criteria", Eur. J. of Comput. Mech. /Rev. Eur. Mec. Num., 18(1), 33-41. https://doi.org/10.3166/ejcm.18.33-41.   DOI
25 Toro, S., Sanchez, P.J., Blanco, P.J., de Souza Neto, E.A., Huespe, A.E. and Feijoo, R.A. (2016), "Multiscale formulation for material failure accounting for cohesive cracks at the macro and micro scales", J. Plasticity, 76(2016), 75-110. https://doi.org/10.1016/j.ijplas.2015.07.001   DOI
26 Ju, J.W. (1990), "Isotropic and Anisotropic damage variables in continuum damage mechanics", J. Eng. Mech., 116 (12), 2764-2770. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:12(2764).   DOI
27 Viceconti, M., Taddei, F., Cristofolini, L., Martelli, S., Falcinelli, C. and Schileo, E. (2012), "Are spontaneous fractures possible? An example of clinical application for personalised, multiscale neuro-musculo-skeletal modelling", J. Biomech., 45(2012), 421-426. https://doi.org/10.1016/j.jbiomech.2011.11.048.   DOI
28 Wang, E., Nelson, T. and Rauch, R. (2004), "Back to Elements-Tetrahedra vs. Hexahedra", International ANSYS Conference Proceedings (2004), Munich, Germany.
29 Zagane, M.S., Benbarek, S., Sahli, A., Bouiadjra, B.B. and Boualem, S. (2016), "Numerical simulation of the femur fracture under static loading", Struct. Eng. Mech., 60(3), 405-412. http://dx.doi.org/10.12989/sem.2016.60.3.405.   DOI
30 Hernandez, C.J., Beaupre, G.S., Keller, T.S. and Carter, D.R. (2001), "The influence of bone volume fraction and ash fraction on bone strength and modulus", Bone, 29(1),74-78. https://doi.org/10.1016/S8756-3282(01)00467-7.   DOI
31 Kachanov, L.M. (1986), Introduction to Continuum Damage Mechanics, Martinus Nijhokk Publishers, Netherlands.
32 Keyak, J.H. (2001), "Improved prediction of proximal femoral fracture load using nonlinear finite element models", Med. Eng. Phys., 23, 165-173. https://doi.org/10.1016/S1350-4533(01)00045-5.   DOI
33 Krajcinovic, D. (1989), "Damage mechanics", Mech. Mater., 8, 117-197. https://doi.org/10.1016/0167-6636(89)90011-2.   DOI
34 Maire, J.F. and Chaboche, J.L. (1997), "A new Formulation of continuum damage mechanics (CDM9 for composite materials", Aerosp. Sci. Technol., 1(4), 247-257. https://doi.org/10.1016/S1270-9638(97)90035-3.   DOI
35 Labergere, C., Rassineux, A. and Saanouni, K. (2007), "Endommagement et procede de mise en forme. Apport du maillage adaptatif", 8e Colloque national en calcul des structures, Giens, France, May 2007.
36 Le Corroller, T., Halgrin, J., Pithioux, M., Guenoun, F., Chabrand, P. and Champsaur, P. (2012), "Combination of texture analysis and bone mineral density improves the prediction of fracture load in human femurs", Osteoporos Int., 23,163-169. https://doi.org/10.1007/s00198-011-1703-1.   DOI
37 Lekadir, K., Hazrati-Marangalou, J., Hoogendoorn, C., Taylor, Z., van Rietbergen, B. and Frangi, A.F. (2015), "Statistical estimation of femur micro-architecture using optimal shape and density predictors", J. Biomech., 48(2015), 598-603. https://doi.org/10.1016/j.jbiomech.2015.01.002.   DOI
38 AbdulKadir, M.R. (2014), "Finite Element Model Construction", Computational Biomechanics of the Hip Joint, Springer, Berlin, Germany. 19-42.
39 Kaneko, T.S., Bell, J.S., Pejcic, M.R., Tehranzadeh, J. and Keyak, J.H. (2004), "Mechanical properties, density and quantitative CT scan data of trabecular bone with and without metastases", J. Biomech., 37, 523-530. https://doi.org/10.1016/j.jbiomech.2003.08.010.   DOI
40 Abedini, M., Khlaghi, E. A., Mehrmashhadi, J., Mussa, M. H., Ansari, M. and Momeni, T. (2017), "Evaluation of concrete structures reinforced with fiber reinforced polymers bars: A Review", J. Asian Sci. Res., 7(5), 165-175.
41 Ariza, O., Gilchrist, S., Widmer, R.P., Guy, P., Ferguson, S.J., Cripton, P.A. and Helgason, B. (2015), "Comparison of explicit finite element and mechanical simulation of the proximal femur during dynamic drop-tower testing", J. Biomech., 48(2015), 224-232. https://doi.org/10.1016/j.jbiomech.2014.11.042.   DOI
42 Bettamer, A., Hambli, R., Allaoui, S. and Almhdie-Imjabber, A. (2015), "Using visual image measurements to validate a novel finite element model of crack propagation and fracture patterns of proximal femur", Comput. Methods Biomech. Biomed. Eng: Imaging Visualization, 5(4), 251-262. https://doi.org/10.1080/21681163.2015.1079505.   DOI
43 Blanco, P.J., Sanchez, P.J., de Souza Neto. E.A. and Feijoo., R.A. (2016), "The method of multiscale virtual power for the derivation of a second order mechanical model", Mech. Mater., 99(2016), 53-67. https://doi.org/10.1016/j.mechmat.2016.05.003.   DOI
44 Briot, K., Cortet, B., Thomas, T., Audran, M., Blain, H., Breuil, L.C., Chapurlat, R., Fardellone, P., Feron, J.M., Gauvain, J.B., Guggenbuhl, P., Kolta, S., Lespessailles, E., Letombe, B., Marcelli, C., Orcel, P., Seret, P., Tremolliere, F. and Roux, C. (2012), "Actualisation 2012 des recommandations francaises du traitement medicamenteux de l'osteoporose postmenopausique", Rev. Rhumatisme, 79 (2012), 264-274. https://doi.org/10.1016/j.rhum.2012.02.006.   DOI