• Title/Summary/Keyword: Pathogenic Escherichia coli

Search Result 432, Processing Time 0.028 seconds

The inhibitory effect of natural bioactives on the growth of pathogenic bacteria

  • Kim, Ji-Sun;Kim, Yang-Ha
    • Nutrition Research and Practice
    • /
    • v.1 no.4
    • /
    • pp.273-278
    • /
    • 2007
  • The objective of this study was to evaluate the inhibitory activity of natural products, against growth of Escherichia coli (ATCC 25922) and Salmonella typhimurium (KCCM 11862). Chitosan, epigallocatechin gallate (EGCG), and garlic were used as natural bioactives for antibacterial activity. The testing method was carried out according to the disk diffusion method. All of chitosan, EGCG, and garlic showed inhibitory effect against the growth of E. coli and Salmonella typhi. To evaluate the antibacterial activity of natural products during storage, chicken skins were inoculated with $10^6$ of E. coli or Salmonella typhi. The inoculated chicken skins, treated with 0.5, 1, or 2% natural bioactives, were stored during 8 day at $4^{\circ}C$. The numbers of microorganisms were measured at 8 day. Both chitosan and EGCG showed significant decrease in the number of E. coli and Salmonella typhi in dose dependent manner (P < 0.05). These results suggest that natural bioactives such as chitosan, EGCG may be possible to be used as antimicrobial agents for the improvement of food safety.

Genetic Analysis and Characterization of a Bacteriophage ØCJ19 Active against Enterotoxigenic Escherichia coli

  • Kim, Gyeong-Hwuii;Kim, Jae-Won;Kim, Jaegon;Chae, Jong Pyo;Lee, Jin-Sun;Yoon, Sung-Sik
    • Food Science of Animal Resources
    • /
    • v.40 no.5
    • /
    • pp.746-757
    • /
    • 2020
  • Enterotoxigenic Escherichia coli (ETEC) is the major pathogenic E. coli that causes diarrhea and edema in post-weaning piglets. In this study, we describe the morphology and characteristics of ØCJ19, a bacteriophage that infects ETEC, and performed genetic analysis. Phage ØCJ19 belongs to the family Myoviridae. One-step growth curve showed a latent phase of 5 min and burst size of approximately 20 phage particles/infected cell. Phage infectivity was stable for 2 h between 4℃ and 55℃, and the phage was stable between pH 3 and 11. Genetic analysis revealed that phage ØCJ19 has a total of 49,567 bases and 79 open reading frames (ORFs). The full genomic sequence of phage ØCJ19 showed the most similarity to an Escherichia phage, vB_EcoS_ESCO41. There were no genes encoding lysogeny, toxins, virulence factors, or antibiotic resistance in this phage, suggesting that this phage can be used safely as a biological agent to control ETEC. Comparative genomic analysis in terms of the tail fiber proteins could provide genetic insight into host recognition and the relationship with other coliphages. These results showed the possibility to improve food safety by applying phage ØCJ19 to foods of animal origin contaminated with ETEC and suggests that it could be the basis for establishing a safety management system in the animal husbandry.

Microbiota Analysis and Microbiological Hazard Assessment in Chinese Chive (Allium tuberosum Rottler) Depending on Retail Types

  • Seo, Dong Woo;Yum, Su-jin;Lee, Heoun Reoul;Kim, Seung Min;Jeong, Hee Gon
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.195-204
    • /
    • 2022
  • Chinese chive (Allium tuberosum Rottler) has potential risks associated with pathogenic bacterial contamination as it is usually consumed raw. In this study, we investigated the microbiota of Chinese chives purchased from traditional markets and grocery stores in March (Spring) and June (Summer) 2017. Differences in bacterial diversity were observed, and the microbial composition varied across sampling times and sites. In June, potential pathogenic genera, such as Escherichia, Enterobacter, and Pantoea, accounted for a high proportion of the microbiota in samples purchased from the traditional market. A large number of pathogenic bacteria (Acinetobacter lwoffii, Bacillus cereus, Klebsiella pneumoniae, and Serratia marcescens) were detected in the June samples at a relatively high rate. In addition, the influence of the washing treatment on Chinese chive microbiota was analyzed. After storage at 26℃, the washing treatment accelerated the growth of enterohemorrhagic Escherichia coli (EHEC) because it caused dynamic shifts in Chinese chive indigenous microbiota. These results expand our knowledge of the microbiota in Chinese chives and provide data for the prediction and prevention of food-borne illnesses.

Bactericidal Efficacy of Fumagari OPP®, Fumigant Against Escherichia coli and Salmonella typhimurium (훈증소독제, Fumagari OPP®의 Escherichia coli와 Salmonella typhimurium에 대한 살균효과)

  • Park, Eun-Kee;Kim, Yongpal;Yu, Eun-Ah;Yoo, Chang-Yeol;Choi, Hyunju;Kim, Suk;Lee, Hu-Jang
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.3
    • /
    • pp.234-240
    • /
    • 2013
  • This test was performed to evaluate the bactericidal efficacy of Fumagari OPP$^{(R)}$, fumigation disinfectant, containing 20% ortho-phenylphenol against Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium). In preliminary tests, both E. coli and S. typhimurium working culture suspension number (N value) was $4.0{\times}10^8$ CFU/mL. And all of the colony numbers on the carriers exposed the fumigant (n1, n2, n3) were higher than 0.5N1 (the number of bacterial test suspentions by pour plate method), 0.5N2 (the number of bacterial test suspentions by filter membrane method) and 0.5N1, respectively. In addition, the mean number of bacteria recovered on the control-carriers (T value) was $3.4{\times}10^6$ CFU/mL. In the bactericidal effect of the fumigant, the reduction number of S. typhimurium and E. coli (d value) was 5.26 and 5.64 logCFU/mL, respectively. According to the French standard for the fumigant, the d value for the effective bactericidal fumigant should be over than 5 logCFU/mL. With the results of this study, Fumagari OPP$^{(R)}$ has an effective bactericidal activity, then the fumigant can be applied to disinfect food materials and kitchen appliances contaminated with pathogenic bacteria.

Synergic Antimicrobial Activity of Scutellariae Radix, Coptidis Rhizoma and Salicylic Acid Combination against Escherichia coli and Pseudomonas aeruginosa (대장균과 녹농균에 대항하는 황금과 황련 및 살리실산 조성물의 항균상승효과)

  • Kim, Su Young;Kim, Ji Hyeun;Yu, Kang Yeol;Lee, Hyun Seo;Jeon, In Hwa;Kang, Hyun Ju;Lee, Jungno;Choi, Byung Min;Jang, Seon Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.4
    • /
    • pp.390-395
    • /
    • 2014
  • Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Listeria. monocytogenes and Bacillus cereus are pathogenic bacteria that should not be detected in cosmetics and foodstuffs. Therefore, we first investigated the antimicrobial activities of extracts of Scutellariae Radix(SR), Coptidis Rhizoma (CR) and salicylic acid(SA) in these pathogenic microorganisms. Although SA has been known to exhibit anti-inflammation and antimicrobial activity against pathogenic microorganisms, a high concentration of SA may cause serious side effects such as skin redness, skin burning, peeling or tissue damage. Hence, we focused on diminishing side effects followed by treatment of a high concentration of SA and investigated whether the combinations of SA with various concentrations(25-400 mg/mL), SR and CR with a concentration(100 mg/mL) which did not show antimicrobial activity against E. coli and P. aeruginosa exhibited meaningful antimicrobial effect against both strains. In our results, the combinations of SA with the lowest concentration(25 mg/mL), SR(100 mg/mL) and CR(100 mg/mL) exhibited significant antimicrobial activity against E.coli in comparison to SA alone(25 mg/mL) showing no antimicrobial activity. Moreover, the combinations of SA (100 mg/mL), SR and CR showed seven times higher antimicrobial activity against E. coli than SA alone(100 mg/mL) and exhibited a significant antimicrobial activity in comparison to ampicilin (p<0.05). The combinations of SA(100 mg/mL), SR and CR showed two times higher antimicrobial activity against P. aeruginosa than SA alone. Therefore, these results indicated that the combinations of SR, CR and SA with low concentration expressed the synergistic antimicrobial effect against E. coli and P. aeruginosa and showed great potential as an antimicrobial agent.

Description of Kinetic Behavior of Pathogenic Escherichia coli in Cooked Pig Trotters under Dynamic Storage Conditions Using Mathematical Equations

  • Ha, Jimyeong;Lee, Jeeyeon;Oh, Hyemin;Kim, Hyun Jung;Choi, Yukyung;Lee, Yewon;Kim, Yujin;Lee, Heeyoung;Kim, Sejeong;Yoon, Yohan
    • Food Science of Animal Resources
    • /
    • v.40 no.6
    • /
    • pp.938-945
    • /
    • 2020
  • A dynamic model was developed to predict the Escherichia coli cell counts in pig trotters at changing temperatures. Five-strain mixture of pathogenic E. coli at 4 Log CFU/g were inoculated to cooked pig trotter samples. The samples were stored at 10℃, 20℃, and 25℃. The cell count data was analyzed with the Baranyi model to compute the maximum specific growth rate (μmax) (Log CFU/g/h) and lag phase duration (LPD) (h). The kinetic parameters were analyzed using a polynomial equation, and a dynamic model was developed using the kinetic models. The model performance was evaluated using the accuracy factor (Af), bias factor (Bf), and root mean square error (RMSE). E. coli cell counts increased (p<0.05) in pig trotter samples at all storage temperatures (10℃-25℃). LPD decreased (p<0.05) and μmax increased (p<0.05) as storage temperature increased. In addition, the value of h0 was similar at 10℃ and 20℃, implying that the physiological state was similar between 10℃ and 20℃. The secondary models used were appropriate to evaluate the effect of storage temperature on LPD and μmax. The developed kinetic models showed good performance with RMSE of 0.618, Bf of 1.02, and Af of 1.08. Also, performance of the dynamic model was appropriate. Thus, the developed dynamic model in this study can be applied to describe the kinetic behavior of E. coli in cooked pig trotters during storage.

Thermal Resistance Characteristics of Bacillus cereus, Escherichia coli O157:H7, and Listeria monocytogenes in a Multi-grain Soy Milk Product (레토르트 곡물 두유 내 Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes의 내열특성)

  • Kim, Nam Hee;Koo, Jae Myung;Rhee, Min Suk
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.593-598
    • /
    • 2015
  • This study determined the thermal resistance of Bacillus cereus, Escherichia coli O157:H7, and Listeria monocytogenes in multi-grain soymilk and proposes processing conditions that meet the national standard for retort food products in Korea. D and z values were calculated from thermal inactivation kinetic curves after heating at 55, 60, and $65^{\circ}C$. The D value for B. cereus at $55^{\circ}C$ was the highest (22.8 min), followed by that for E. coli O157:H7 (18.8 min) and L. monocytogenes (17.6 min). At $60-65^{\circ}C$, the order was L. monocytogenes ($D_{60-65^{\circ}C}=3.4-0.9min$), E. coli O157:H7 (3.0-0.3 min), and B. cereus (1.2-0.3 min). The z values for these species were 5.2, 5.5, and $7.7^{\circ}C$, respectively. The Korean national standard for retort food products was achieved by thermal processing at $124{\pm}2^{\circ}C$ for 0.3-2.2 min. This study provides useful data for ensuring both the microbiological safety and product quality of multi-grain soymilk products.

Colibacillosis in domestic animals, a review (가축에서 대장균 감염증)

  • 송희종;채효석
    • Korean Journal of Veterinary Service
    • /
    • v.21 no.4
    • /
    • pp.413-429
    • /
    • 1998
  • Escherichia coli is recovered from a wide variety of infections in many animals species. It may be a primary or secondary agent. Nursing and young animals are particularly susceptible, and urinary tract infections are frequent. The various serotypes of E coli are intestinal inhabitants of animals including humans and probably infect most mammals and birds : therefore, they have a cosmopolitan distribution. Colibacillosis refers to any totalized or systemic infection caused entirely or partly by E coli. Collibacillosis in mammals is most often a primary enteric disease, whereas collibacillosis in poultry is typically a secondary located or systemic disease occurring when host defenses have been impaired or overwhelmed. Other opportunistic bacteria, which can be identified by culture, may play a similar role to that of I coli in secondary infections. Collectively, infections caused by E coli are responsible for significant economic losses to the animal performance. From the standpoint of pathogenic mechanisms and diseases, four major categories of E coli are recognized : enterotoxigenic(ETEC), enteropathogenic (EPEC), enteroinvasive(EIEC), and enterohemorrhagic(EHEC). In addition, two less-well-defined E coli categories are recognized in animals and humans : enteroaggregative and cytotoxin necrotizing factor-positive. The aforementioned categories are represented by different serotypes. Certain serotypes show a host preference and are encountered more frequently in some disease syndromes. Of the four major categories, ETEC is the most common cause of diarrhea in calves, lambs, and pigs. Strains in the other categories cause the less-common diarrhea and other disease syndromes. Enterotoxins and pilus antigens are the two most prominent virulence factors thus far identified for ETEC. Two enterotoxins, one heat-stable(ST) and one heat-labile(LT), are produced by enterotoxigenic strains of E coli : not all culture produce both of these plasmid-based enterotoxins.

  • PDF

Prevalence and Characterization of Diarrheagenic Escherichia coli Isolated from Raw Chicken and Chilled Chicken in Korea (국내 유통중인 생닭 및 닭가공품에서 병원성 대장균의 분리 및 특성)

  • Cho, Yong-Sun;Lee, Da-Yeon;Kim, Hee-Eon;Lee, Myung-Ki;Lee, Joo-Young
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.2
    • /
    • pp.129-134
    • /
    • 2017
  • Diarrheagenic Escherichia coli is now recognized as an important cause of diarrhea, hemorrhagic colitis and hemolytic-uremic syndrome (HUS) worldwide. E. coli were isolated from 80 of 356 (22.5%) chicken and chilled chicken products in Korea. Fifteen virulence genes specific for pathogenic E. coli, including Shiga toxin-producing E. coli (STEC), enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC) and enteroaggregative E. coli (EAEC), were examined by multiplex PCR. STEC virulence markers were detected for eaeA (20.0%), escV (21.3%), stx1 (3.8%), ent (2.5%), EHEC-hly (1.3%), stx2 (1.3%), EAEC virulence marker (astA) was detected in 32.5%. ETEC and EIEC were not detected. STEC serotypes O152, O1, O116, O26, O25, O119 and O153 were found in chicken samples. This suggests the importance of diarrheagenic Escherichia coli control in raw chicken and chilled chicken food for food safety.

Inactivation of Pathogenic Escherichia coli Using Crude Extract of Immunized Silkworm (면역유도누에 추출물을 이용한 병원성 대장균의 불활성화)

  • Park, Jong Woo;Jeong, Chan Young;Lee, Chang Hoon;Kang, Sang Kuk;Ju, Wan-Taek;Kim, Seong-Wan;Kim, Nam-Suk;Kim, Kee Young
    • Journal of Life Science
    • /
    • v.31 no.8
    • /
    • pp.755-760
    • /
    • 2021
  • Swine diarrhea is a livestock disease that causes huge economic losses to pig farms. In general, diarrhea occurs because of the proliferation of pathogenic Escherichia coli (E. coli). The toxins produced by the proliferated E. coli cause edema in pigs. Although the proliferation of these coliforms can be prevented by using a vaccine, the vaccines containing chemically produced dead bacteria are not very effective, making it difficult to control the proliferation of E. coli. Therefore, there is a need to develop new, more effective vaccines. In this study, we prepared killed F4+ and F18ab+ E. coli, which induce diarrhea and edema in pigs, using the extracts of immune-induced silkworms containing antimicrobial peptides and examined their availability as a killed-bacteria vaccine. First, the antimicrobial activity analysis of the prepared immune-induced silkworm extract was conducted using the radial diffusion assay. The results showed high activity against both F4+ and F18ab+ E. coli. The production efficiency of E. coli dead cells was determined using the colony-counting method. The concentration of the E. coli dead cells was the highest (50 mg/ml) when treated at 4℃. In addition, the analysis of the prepared dead cells using a transmission electron microscope confirmed that E. coli leaked out of the cytoplasm and the cell membrane remained intact. Therefore, F4+ and F18ab+ E. coli produced using immune-induced silkworms extract are considered to be highly available as bacterial ghost vaccines that can help prevent swine diarrhea and the resulting edema.