Browse > Article
http://dx.doi.org/10.4014/jmb.2112.12013

Microbiota Analysis and Microbiological Hazard Assessment in Chinese Chive (Allium tuberosum Rottler) Depending on Retail Types  

Seo, Dong Woo (Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University)
Yum, Su-jin (Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University)
Lee, Heoun Reoul (Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University)
Kim, Seung Min (Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University)
Jeong, Hee Gon (Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.2, 2022 , pp. 195-204 More about this Journal
Abstract
Chinese chive (Allium tuberosum Rottler) has potential risks associated with pathogenic bacterial contamination as it is usually consumed raw. In this study, we investigated the microbiota of Chinese chives purchased from traditional markets and grocery stores in March (Spring) and June (Summer) 2017. Differences in bacterial diversity were observed, and the microbial composition varied across sampling times and sites. In June, potential pathogenic genera, such as Escherichia, Enterobacter, and Pantoea, accounted for a high proportion of the microbiota in samples purchased from the traditional market. A large number of pathogenic bacteria (Acinetobacter lwoffii, Bacillus cereus, Klebsiella pneumoniae, and Serratia marcescens) were detected in the June samples at a relatively high rate. In addition, the influence of the washing treatment on Chinese chive microbiota was analyzed. After storage at 26℃, the washing treatment accelerated the growth of enterohemorrhagic Escherichia coli (EHEC) because it caused dynamic shifts in Chinese chive indigenous microbiota. These results expand our knowledge of the microbiota in Chinese chives and provide data for the prediction and prevention of food-borne illnesses.
Keywords
Microbiota; Chinese chive; food safety; Food-borne pathogen; 16S rRNA gene sequencing;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Grimont F, Grimont PA. 2015. Serratia. Bergey's manual of systematics of archaea and bacteria. pp. 1-22.
2 Kim SJ, Shin SC, Hong SG, Lee YM, Lee H, Lee J, et al. 2012. Genome sequence of Janthinobacterium sp. strain PAMC 25724, isolated from alpine glacier cryoconit. Am. Soc. Microbiol. 194: 2096.
3 Chen F, Guo Y, Wang J, Li J, Wang H. 2007. Biological control of grape crown gall by Rahnella aquatilis HX2. Plant Dis. 91: 957-963.   DOI
4 Kot W, Neve H, Heller KJ, Vogensen FK. 2014. Bacteriophages of Leuconostoc, Oenococcus, and Weissella. Front. Microbiol. 5: 186.   DOI
5 Regalado NG, Martin G, Antony SJ. 2009. Acinetobacter lwoffii: bacteremia associated with acute gastroenteritis. Travel Med. Infect. Dis. 7: 316-317.   DOI
6 Kotiranta A, Lounatmaa K, Haapasalo M. 2000. Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect. 2: 189-198.   DOI
7 Oogai Y, Matsuo M, Hashimoto M, Kato F, Sugai M, Komatsuzawa H. 2011. Expression of virulence factors by Staphylococcus aureus grown in serum. Appl. Environ. Microbiol. 77: 8097-8105.   DOI
8 Bell C. 2002. Approach to the control of entero-haemorrhagic Escherichia coli (EHEC). Int. J. Food Microbiol. 78: 197-216.   DOI
9 Viazis S, Akhtar M, Feirtag J, Diez-Gonzalez F. 2011. Reduction of Escherichia coli O157: H7 viability on leafy green vegetables by treatment with a bacteriophage mixture and trans-cinnamaldehyde. Food Microbiol. 28: 149-157.   DOI
10 Lee S, Park A, Yoon H, Lee H, Koo M, Yoon Y. 2014. Comparison of growth and disinfectant resistance of Bacillus cereus isolated from fresh-cut produce and organic vegetables. Food Sci. Biotechnol. 23: 1727-1731.   DOI
11 Jung Y, Jang H, Matthews KR. 2014. Effect of the food production chain from farm practices to vegetable processing on outbreak incidence. Microb. Biotechnol. 7: 517-527.   DOI
12 Laughlin M, Bottichio L, Weiss J, Higa J, McDonald E, Sowadsky R, et al. 2019. Multistate outbreak of Salmonella Poona infections associated with imported cucumbers, 2015-2016. Epidemiol. Infect. 147: e270.   DOI
13 Yu Y-C, Yum S-J, Jeon D-Y, Jeong H-G. 2018. Analysis of the microbiota on lettuce (Lactuca sativa L.) cultivated in South Korea to identify foodborne pathogens. J. Microbiol. Biotechnol. 28: 1318-1331.   DOI
14 Koseki S, Itoh K. 2001. Prediction of microbial growth in fresh-cut vegetables treated with acidic electrolyzed water during storage under various temperature conditions. J. Food Prot. 64: 1935-1942.   DOI
15 Ling B, Tang J, Kong F, Mitcham E, Wang S. 2015. Kinetics of food quality changes during thermal processing: a review. Food Bioprocess Technol. 8: 343-358.   DOI
16 Streit WR, Schmitz RA. 2004. Metagenomics-the key to the uncultured microbes. Curr. Opin. Microbiol. 7: 492-498.   DOI
17 Handelsman J. 2004. Metagenomics: application of genomics to uncultured microorganisms. Microb. Mol. Biol. Rev. 68: 669-685.   DOI
18 Bergholz TM, Switt AIM, Wiedmann M. 2014. Omics approaches in food safety: fulfilling the promise? Trends Microbiol. 22: 275-281.   DOI
19 Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31: 814-821.   DOI
20 Shah N, Tang H, Doak TG, Ye Y. 2011. Comparing bacterial communities inferred from 16S rRNA gene sequencing and shotgun metagenomics, pp. 165-176. Biocomputing 2011, Ed. World Scientific,
21 Jeon D-y, Yum S-j, Seo DW, Kim SM, Jeong HG. 2019. Leaf-associated microbiota on perilla (Perilla frutescens var. frutescens) cultivated in South Korea to detect the potential risk of food poisoning. Food Res. Int. 126: 108664.   DOI
22 Yabuki Y, Mukaida Y, Saito Y, Oshima K, Takahashi T, Muroi E, et al. 2010. Characterisation of volatile sulphur-containing compounds generated in crushed leaves of Chinese chive (Allium tuberosum Rottler). Food Chem.120: 343-348.   DOI
23 Imahori Y, Suzuki Y, Uemura K, Kishioka I, Fujiwara H, Ueda Y, et al. 2004. Physiological and quality responses of Chinese chive leaves to low oxygen atmosphere. Postharvest Biol. Technol. 31: 295-303.   DOI
24 Worsfold D, Worsfold PM, Griffith CJ. 2004. An assessment of food hygiene and safety at farmers' markets. Int. J. Environ. Health Res. 14: 109-119.   DOI
25 Grad YH, Lipsitch M, Feldgarden M, Arachchi HM, Cerqueira GC, FitzGerald M, et al. 2012. Genomic epidemiology of the Escherichia coli O104: H4 outbreaks in Europe, 2011. Proc. Natl. Acad. Sci. USA 109: 3065-3070.   DOI
26 Hanshew AS, Mason CJ, Raffa KF, Currie CR. 2013. Minimization of chloroplast contamination in 16S rRNA gene pyrosequencing of insect herbivore bacterial communities. J. Microbiol. Methods 95: 149-155.   DOI
27 Kim H-E, Lee J-J, Lee M-J, Kim B-S. 2019. Analysis of microbiome in raw chicken meat from butcher shops and packaged products in South Korea to detect the potential risk of foodborne illness. Food Res. Int. 122: 517-527.   DOI
28 Kumar PS, Brooker MR, Dowd SE, Camerlengo T. 2011. Target region selection is a critical determinant of community fingerprints generated by 16S pyrosequencing. PLoS One 6: e20956.   DOI
29 Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194-2200.   DOI
30 Havelaar AH, Kirk MD, Torgerson PR, Gibb HJ, Hald T, Lake RJ, et al. 2015. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med. 12: e1001923.   DOI
31 Turner TR, James EK, Poole PS. 2013. The plant microbiome. Genome Biol. 14: 209.   DOI
32 Williams TR, Moyne A-L, Harris LJ, Marco ML. 2013. Season, irrigation, leaf age, and Escherichia coli inoculation influence the bacterial diversity in the lettuce phyllosphere. PLoS One 8: e68642.   DOI
33 Rastogi G, Sbodio A, Tech JJ, Suslow TV, Coaker GL, Leveau JH. 2012. Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J. 6: 1812-1822.   DOI
34 Ingraham J. 1958. Growth of psychrophilic bacteria. J. Bacteriol. 76: 75.   DOI
35 Compant S, Mitter B, Colli-Mull JG, Gangl H, Sessitsch A. 2011. Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb. Ecol. 62: 188-197.   DOI
36 Sanders W, Sanders CC. 1997. Enterobacter spp.: pathogens poised to flourish at the turn of the century. Clin. Microbiol. Rev. 10: 220-241.   DOI
37 Abbas Z, Authman S, Al-Ezee A. 2017. Temperature effects on growth of the biocontrol agent Pantoea agglomerans (an oval isolate from Iraqi soils). J. Adv. Lab. Res. Biol. 8: 85-88.
38 Stover CK, Pham XQ, Erwin A, Mizoguchi S, Warrener P, Hickey M, et al. 2000. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406: 959-964.   DOI
39 Bazhanov DP, Yang K, Li H, Li C, Li J, Chen X, et al. 2017. Colonization of plant roots and enhanced atrazine degradation by a strain of Arthrobacter ureafaciens. Appl. Microbiol. Biotechnol. 101: 6809-6820.   DOI
40 Fonseca P, Moreno R, Rojo F. 2011. Growth of Pseudomonas putida at low temperature: global transcriptomic and proteomic analyses. Environ. Microbiol. Rep. 3: 329-339.   DOI
41 Jung I, Park D-H, Park K. 2002. A study of the growth condition and solubilization of phosphate from hydroxyapatite by Pantoea agglomerans. Biotechnol. Bioprocess Eng. 7: 201-205.   DOI
42 Cruz AT, Cazacu AC, Allen CH. 2007. Pantoea agglomerans, a plant pathogen causing human disease. J. Clin. Microbiol. 45: 1989-1992.   DOI
43 Safdarian M, Askari H, Shariati V, Nematzadeh G. 2019. Transcriptional responses of wheat roots inoculated with Arthrobacter nitroguajacolicus to salt stress. Sci. Rep. 9: 1-12.   DOI
44 Singh RN, Gaba S, Yadav AN, Gaur P, Gulati S, Kaushik R, et al. 2016. First high quality draft genome sequence of a plant growth promoting and cold active enzyme producing psychrotrophic Arthrobacter agilis strain L77. Stand. Genomic. Sci. 11: 54.   DOI
45 Sajjad W, Din G, Rafiq M, Iqbal A, Khan S, Zada S, et al. 2020. Pigment production by cold-adapted bacteria and fungi: colorful tale of cryosphere with wide range applications. Extremophiles 24: 447-473.   DOI
46 Ofek M, Hadar Y, Minz D. 2012. Ecology of root colonizing Massilia (Oxalobacteraceae). PLoS One 7: e40117.   DOI
47 Ramesh Mekala KP, Saritha GP, Mohan AD. 2020. Bactericidal effects of Exiguobacterium sp. GM010 pigment against food-borne pathogens. Front. Sust. Food Sys. DOI:10.3389/fsufs.2020.00142.   DOI
48 Kaper JB, Nataro JP, Mobley HL. 2004. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2: 123-140.   DOI
49 Struve C, Krogfelt KA. 2004. Pathogenic potential of environmental Klebsiella pneumoniae isolates. Environ. Microbiol. 6: 584-590.   DOI
50 Yabuuchi E, Wang L, Arakawa M, Yano I. 1993. Survival of Pseudomonas pseudomallei strains at 5 degrees C. Kansenshogaku Zasshi 67: 331-335.   DOI
51 Berger CN, Sodha SV, Shaw RK, Griffin PM, Pink D, Hand P, et al. 2010. Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environ. Microbiol. 12: 2385-2397.   DOI
52 Kim D, Hong S, Kim Y-T, Ryu S, Kim HB, Lee J-H. 2018. Metagenomic approach to identifying foodborne pathogens on Chinese cabbage. J. Microbiol. Biotechnol. 28: 227-235.   DOI
53 Gobbetti M, Rizzello C. 2014. Arthrobacter. Encyclopedia of Food Microbiol. 69-87.
54 Mena KD, Gerba CP. 2009. Risk assessment of Pseudomonas aeruginosa in water. Rev. Environ. Contam. Toxicol. 201: 71-115.   DOI
55 Kim DY, Kim J, Lee YM, Lee JS, Shin D-H, Ku B-H, et al. 2021. Identification and Characterization of a novel, cold-adapted d-Xylobiose-and d-Xylose-releasing endo-β-1, 4-xylanase from an antarctic soil bacterium, Duganella sp. PAMC 27433. Biomolecules 11: 680.   DOI
56 Scheinberg JA, Dudley EG, Campbell J, Roberts B, DiMarzio M, DebRoy C, et al. 2017. Prevalence and phylogenetic characterization of Escherichia coli and hygiene indicator bacteria isolated from leafy green produce, beef, and pork obtained from farmers' markets in Pennsylvania. J. Food Prot. 80: 237-244.   DOI
57 Davies Y, Cunha M, Oliveira M, Oliveira M, Philadelpho N, Romero D, et al. 2016. Virulence and antimicrobial resistance of Klebsiella pneumoniae isolated from passerine and psittacine birds. Avian Pathol. 45: 194-201.   DOI
58 Frank C, Werber D, Cramer JP, Askar M, Faber M, an der Heiden M, et al. 2011. Epidemic profile of Shiga-toxin-producing Escherichia coli O104: H4 outbreak in Germany. N. Engl. J. Med. 365: 1771-1780.   DOI
59 Grant J, Wendelboe AM, Wendel A, Jepson B, Torres P, Smelser C, et al. 2008. Spinach-associated Escherichia coli O157: H7 outbreak, Utah and New Mexico, 2006. Emerg. Infect. Dis. 14: 1633.   DOI