• Title/Summary/Keyword: Pathogenesis resistance

Search Result 153, Processing Time 0.026 seconds

The Role of Inflammatory Mediators in the Pathogenesis of Nonalcoholic Fatty Liver Disease

  • Kim, Joon Sung
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.15 no.2
    • /
    • pp.74-78
    • /
    • 2012
  • With a markedly increased prevalence of obesity, non-alcoholic fatty liver disease (NAFLD) now becomes the most common cause of chronic liver disease in both adults and children. The etiology and pathogenesis of NAFLD are multifactorial and remain incompletely understood. According to the "two-hit" theory, inflammatory cytokines and adipokines are activated by oxidative stress and they are involved in insulin resistance, necroinflammatory steatohepatitis and fibrosis. This review discusses the latest updates on the role of some of important inflammatory adipokines and cytokines in the pathogenesis of NAFLD with an emphasis on their potential therapeutic implications.

Systemic Resistance and Expression of the Pathogenesis-Related Genes Mediated by the Plant Growth-Promoting Rhizobacterium Bacillus amyloliquefaciens EXTN-1 Against Anthracnose Disease in Cucumber

  • Park, Kyung-Seok;Ahn, Il-Pyung;Kim, Choong-Hoe
    • Mycobiology
    • /
    • v.29 no.1
    • /
    • pp.48-53
    • /
    • 2001
  • Plants have the ability to acquire an enhanced level of resistance to pathogen attack after being exposed to specific biotic stimuli. To obtain plant growth-promoting rhizobacteria inducing resistance against cucumber anthracnose by Colletotrichum orbiculare, more than 800 strains of rhizobacteria were screened in the greenhouse. Among these strains, Bacillus amyloliquefaciens solate EXTN-1 showed significant disease control efficacy on the plants. Induction of pathogenesis-related(PR-la) gene expression by EXTN-1 was assessed using tobacco plants transformed with PR-1a::$\beta$-glucuronidase(GUS) construct. GUS activities of tobacco treated with EXTN-1 and salicylic acid-treated transgenic tobacco were significantly higher than those of tobacco plants with other treatments. Gene expression analyses indicated that EXTN-1 induces the accumulation of defense-related genes of tobacco. The results showed that some defense genes are expressed by the treatment with EXTN-1 suggesting the similar resistance mechanism by salicylic acid.

  • PDF

The Evolving Epidemiology of Serotype Distribution and Antimicrobial Resistance of Streptococcus pneumoniae Strains Isolated from Adults in Crete, Greece, 2009-2016

  • Maraki, Sofia;Mavromanolaki, Viktoria Eirini;Stafylaki, Dimitra;Hamilos, George;Samonis, George
    • Infection and chemotherapy
    • /
    • v.50 no.4
    • /
    • pp.328-339
    • /
    • 2018
  • Background: Pneumococcal disease is a major cause of morbidity and mortality worldwide, especially in patients with comorbidities and advanced age. This study evaluated trends in epidemiology of adult pneumococcal disease in Crete, Greece, by identifying serotype distribution and antimicrobial resistance of consecutive Streptococcus pneumoniae strains isolated from adults during an 8-year time period (2009-2016) and the indirect effect of the infant pneumococcal higher-valent conjugate vaccines 10-valent pneumococcal conjugate vaccine (PCV10) and 13-valent pneumococcal conjugate vaccine (PCV13). Materials and Methods: Antimicrobial susceptibility was performed by E-test and serotyping by Quellung reaction. Multidrug resistance (MDR) was defined as non-susceptibility to penicillin (PNSP) combined with resistance to ${\geq}2$ non-${\beta}$-lactam antimicrobials. Results: A total of 135 S. pneumoniae strains were isolated from adults during the study period. Twenty-one serotypes were identified with 17F, 15A, 3, 19A, and 11A, being the most common. The coverage rates of PCV10, and PCV13 were 17.8% and 37.8%, respectively. PCV13 serotypes decreased significantly from 68.4% in 2009 to 8.3% in 2016 (P = 0.002). The most important emerging non-PCV13 serotypes were 17F, 15A, and 11A, with 15A being strongly associated with antimicrobial resistance and MDR. Among all study isolates, penicillin-resistant and MDR strains represented 7.4% and 14.1%, respectively. Predominant PNSP serotypes were 19A (21.7%), 11A (17.4%), and 15A (17.4%). Erythromycin, clindamycin, tetracycline, trimethoprim-sulfamethoxazole, and levofloxacin resistant rates were 30.4%, 15.6%, 16.3%, 16.3%, and 1.5%, respectively. Conclusion: Although pneumococcal disease continues to be a health burden in adults in Crete, our study reveals a herd protection effect of the infant pneumococcal higher-valent conjugate vaccination. Surveillance of changes in serotype distribution and antimicrobial resistance among pneumococcal isolates are necessary to guide optimal prevention and treatment strategies.

Regulation of Pathogenesis by Light in Cercospora zeae-maydis: An Updated Perspective

  • Kim, Hun;Ridenour, John B.;Dunkle, Larry D.;Bluhm, Burton H.
    • The Plant Pathology Journal
    • /
    • v.27 no.2
    • /
    • pp.103-109
    • /
    • 2011
  • The fungal genus Cercospora is one of the most ubiquitous groups of plant pathogenic fungi, and gray leaf spot caused by C. zeae-maydis is one of the most widespread and damaging foliar diseases of maize in the world. While light has been implicated as a critical environmental regulator of pathogenesis in C. zeae-maydis, the relationship between light and the development of disease is not fully understood. Recent discoveries have provided new insights into how light influences pathogenesis and morphogenesis in C. zeae-maydis, particularly at the molecular level. This review is focused on integrating old and new information to provide an updated perspective of how light influences pathogenesis, and provides a working model to explain some of the underlying molecular mechanisms. Ultimately, a thorough molecular-level understanding of how light regulates pathogenesis will augment efforts to manage gray leaf spot by improving host resistance and disease management strategies.

Scopoletin Production Related to Induced Resistance of Tobacco Plants Against Tobacco mosaic virus

  • Kim, Young-Ho;Choi, Do-Il;Yeo, Woon-Hyung;Kim, Young-Sook;Chae, Soon-Yong;Park, Eun-Kyung;Kim, Sang-Seock
    • The Plant Pathology Journal
    • /
    • v.16 no.5
    • /
    • pp.264-268
    • /
    • 2000
  • A fluorescent material was accumulated in inoculated leaves showing necrotic local lesions of tobacco plants with N gene, Nicotiana tabacum cvs. Xanthi-nc NN, Samsun NN, Burley 21 and KF 114, and N. glutinosa, and Datura stramonium at the early growth stages by the inoculation of Tobacco mosaic virus (TMV). It was identified as a coumarin phytoalexin, scopoletin. Although the material was most prominently produced in TMV-inoculated tobacco leaves with local necrotic lesions, its accumulation was also noted in uninoculated leaves of TMV-inoculated plants. Its accumulation was somewhat greater in high resistance-induced leaves than low resistance-induced and intact leaves. Scopoletin treatment induced the expression of a pathogenesis-related protein, PR-1, prominently at the concentration of 500 or 1000 ${\mu}$g/ml. This suggests that scopoletin is a phytoalexin abundantly accumulating in N gene-containing resistant plants in response to TMV infection, and may be related to hypersensitive responses (HR) and systemic acquired resistance (SAR) in the resistant tobacco plants.

  • PDF

An Acidic PATHOGENESIS-RELATED1 Gene of Oryza grandiglumis is Involved in Disease Resistance Response Against Bacterial Infection

  • Shin, Sang Hyun;Pak, Jung-Hun;Kim, Mi Jin;Kim, Hye Jeong;Oh, Ju Sung;Choi, Hong Kyu;Jung, Ho Won;Chung, Young Soo
    • The Plant Pathology Journal
    • /
    • v.30 no.2
    • /
    • pp.208-214
    • /
    • 2014
  • Wild rice, Oryza grandiglumis shows hyper-resistance response to pathogen infection. In order to identify genes necessary for defense response in plants, we have carried out a subtractive hybridization coupled with a cDNA macroarray. An acidic PATHOGENESIS-RELATED1 (PR1) gene of the wild rice is highly identical to the acidic PR1 genes of different plant species. The OgPR1a cDNA has an apparent single open reading frame with a predicted molecular mass 40,621 Da and an isoelectic point of 5.14. Both in silico analysis and a transient expression assay in onion epidermal cells revealed that the OgPR1a protein could be localized in intercellular space in plants. The OgPR1a mRNA was strongly transcribed by the exogenous treatment with ethylene and jasmonic acid as well as protein phosphatase inhibitors. Additionally, ectopic expression of the OgPR1a conferred disease resistance on Arabidopsis to the bacterial and fungal infections.

Review of the Molecular Pathogenesis of Osteosarcoma

  • He, Jin-Peng;Hao, Yun;Wang, Xiao-Lin;Yang, Xiao-Jin;Shao, Jing-Fan;Guo, Feng-Jin;Feng, Jie-Xiong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.5967-5976
    • /
    • 2014
  • Treating the osteosarcoma (OSA) remains a challenge. Current strategies focus on the primary tumor and have limited efficacy for metastatic OSA. A better understanding of the OSA pathogenesis may provide a rational basis for innovative treatment strategies especially for metastases. The aim of this review is to give an overview of the molecular mechanisms of OSA tumorigenesis, OSA cell proliferation, apoptosis, migration, and chemotherapy resistance, and how improved understanding might contribute to designing a better treatment target for OSA.

Update of genetic susceptibility in patients with Kawasaki disease

  • Yoon, Kyung Lim
    • Clinical and Experimental Pediatrics
    • /
    • v.58 no.3
    • /
    • pp.84-88
    • /
    • 2015
  • Kawasaki disease (KD) is an acute systemic vasculitis that predominantly affects children, and can result in coronary artery lesions (CAL). A patient with KD who is resistant to treatment with intravenous immunoglobulin (IVIG) has a higher risk of developing CAL. Incomplete KD has increased in prevalence in recent years, and is another risk factor for the development of CAL. Although the pathogenesis of KD remains unclear, there has been increasing evidence for the role of genetic susceptibility to the disease since it was discovered in 1967. We retrospectively reviewed previous genetic research for known susceptibility genes in the pathogenesis of KD, IVIG resistance, and the development of CAL. This review revealed numerous potential susceptibility genes including genetic polymorphisms of ITPKC, CASP3, the transforming growth factor-${\beta}$ signaling pathway, B lymphoid tyrosine kinase, FCGR2A, KCNN2, and other genes, an imbalance of Th17/Treg, and a range of suggested future treatment options. The results of genetic research may improve our understanding of the pathogenesis of KD, and aid in the discovery of new treatment modalities for high-risk patients with KD.

Role of Tumor Necrosis Factor-${\alpha}$ Promoter Polymorphism and Insulin Resistance in the Development of Non-alcoholic Fatty Liver Disease in Obese Children

  • Yang, Hye-Ran;Ko, Jae-Sung;Seo, Jeong-Kee
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.15 no.1
    • /
    • pp.44-51
    • /
    • 2012
  • Purpose: Tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) polymorphism has been suggested to play an important role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) in obese adults, and known to be a mediator of insulin resistance. In this study, we evaluated the role of TNF-${\alpha}$ promoter polymorphisms and insulin resistance in the development of NAFLD in obese children. Methods: A total of 111 obese children (M:F=74:37; mean age, $11.1{\pm}2.0$ yrs) were included. The children were divided into 3 groups: controls (group I, n=61), children with simple steatosis (group II, n=17), and children with non-alcoholic steatohepatitis (group III, n=33). Serum TNF-${\alpha}$ levels, homeostasis model assessment of insulin resistance (HOMA-IR), and TNF-${\alpha}$ -308 and -238 polymorphisms were evaluated. Results: There were no differences in TNF-${\alpha}$ polymorphism at the -308 or the -238 loci between group I and group II + III ($p$=0.134 and $p$=0.133). The medians of HOMA-IR were significantly different between group I and group II + III ($p$=0.001), with significant difference between group II and group III ($p$=0.007). No difference was observed in the HOMA-IR among the genotypes at the -308 locus ($p$=0.061) or the -238 locus ($p$=0.207) in obese children. Conclusion: TNF-${\alpha}$ promoter polymorphisms at the -308 and -238 loci were not significantly associated with the development of NAFLD in children; nevertheless, insulin resistance remains a likely essential factor in the pathogenesis of NAFLD in obese children, especially in the progression to NASH.