References
- Abarzua F, Sakaguchi M, Takaishi M, et al (2005). Adenovirusmediated overexpression of REIC/Dkk-3 selectively induces apoptosis in human prostate cancer cells through activation of c-Jun-NH2-kinase. Cancer Res, 65, 9617-22. https://doi.org/10.1158/0008-5472.CAN-05-0829
- Abramson LP, Stellmach V, Doll JA, et al (2003). Wilms' tumor growth is suppressed by antiangiogenic pigment epithelium-derived factor in a xenograft model. J Pediatr Surg, 38, 336-42. https://doi.org/10.1053/jpsu.2003.50104
- Akasbi Y, Arifi S, Lahlaidi K, et al (2012). Renal metastases of a femur osteosarcoma: a case report and a review of the literature. Case Rep Urol, 2012, 2591-3.
- Apetoh L, Ghiringhelli F, Tesniere A, et al (2007). Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med, 13, 1050-9. https://doi.org/10.1038/nm1622
- Bacci G, Rocca M, Salone M, et al (2008). High grade osteosarcoma of the extremities with lung metastases at presentation: treatment with neoadjuvant chemotherapy and simultaneous resection of primary and metastatic lesions. J Surg Oncol, 98, 415-20. https://doi.org/10.1002/jso.21140
- Baldini N, Scotlandi K, Barbanti-Brodano G, et al (1995). Expression of P-glycoprotein in high-grade osteosarcomas in relation to clinical outcome. N Engl J Med, 333, 1380-5. https://doi.org/10.1056/NEJM199511233332103
- Barker N, Clevers H (2006). Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov, 5, 997-1014. https://doi.org/10.1038/nrd2154
- Bielack SS, Carrle D, Hardes J, et al (2008). Bone tumors in adolescents and young adults. Curr Treat Options Oncol, 9, 67-80. https://doi.org/10.1007/s11864-008-0057-1
- Broadhead ML, Dass CR, Choong PF (2009). In vitro and in vivo biological activity of PEDF against a range of tumors. Expert Opin Ther Targets, 13, 1429-38. https://doi.org/10.1517/14728220903307475
- Brunet A, Bonni A, Zigmond MJ, et al (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 96, 857-68. https://doi.org/10.1016/S0092-8674(00)80595-4
- Cai D, Latham VM, Jr, Zhang X, et al (2006). Combined depletion of cell cycle and transcriptional cyclin-dependent kinase activities induces apoptosis in cancer cells. Cancer Res, 66, 9270-80. https://doi.org/10.1158/0008-5472.CAN-06-1758
- Cardone MH, Roy N, Stennicke HR, et al (1998). Regulation of cell death protease caspase-9 by phosphorylation. Science, 282, 1318-21. https://doi.org/10.1126/science.282.5392.1318
- Chan HS, Grogan TM, Haddad G, et al (1997). P-glycoprotein expression: critical determinant in the response to osteosarcoma chemotherapy. J Natl Cancer Inst, 89, 1706-15. https://doi.org/10.1093/jnci/89.22.1706
- Chen JK, Taipale J, Cooper MK, et al (2002). Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev, 16, 2743-8. https://doi.org/10.1101/gad.1025302
- Chen YN, Sharma SK, Ramsey TM, et al (1999). Selective killing of transformed cells by cyclin/cyclin-dependent kinase 2 antagonists. Proc Natl Acad Sci USA, 96, 4325-9. https://doi.org/10.1073/pnas.96.8.4325
- Chou AJ, Gorlick R (2006). Chemotherapy resistance in osteosarcoma: current challenges and future directions. Expert Rev Anticancer Ther, 6, 1075-85. https://doi.org/10.1586/14737140.6.7.1075
- Choy E, Hornicek F, MacConaill L, et al (2012). Highthroughput genotyping in osteosarcoma identifies multiple mutations in phosphoinositide-3-kinase and other oncogenes. Cancer, 118, 2905-14. https://doi.org/10.1002/cncr.26617
- Chuang JY, Yang WH, Chen HT, et al (2009). CCL5/CCR5 axis promotes the motility of human oral cancer cells. J Cell Physiol, 220, 418-26. https://doi.org/10.1002/jcp.21783
- Cooper MK, Porter JA, Young KE, et al (1998). Teratogenmediated inhibition of target tissue response to Shh signaling. Science, 280, 1603-7. https://doi.org/10.1126/science.280.5369.1603
- Corbit KC, Aanstad P, Singla V, et al (2005). Vertebrate Smoothened functions at the primary cilium. Nature, 437, 1018-21. https://doi.org/10.1038/nature04117
- Crescenzi E, Palumbo G, Brady HJ (2005). Roscovitine modulates DNA repair and senescence: implications for combination chemotherapy. Clin Cancer Res, 11, 8158-71. https://doi.org/10.1158/1078-0432.CCR-05-1042
- Dawson DW, Volpert OV, Gillis P, et al (1999). Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science, 285, 245-8. https://doi.org/10.1126/science.285.5425.245
- De Blasio A, Messina C, Santulli A, et al (2005). Differentiative pathway activated by 3-aminobenzamide, an inhibitor of PARP, in human osteosarcoma MG-63 cells. FEBS Lett, 579, 615-20. https://doi.org/10.1016/j.febslet.2004.12.028
- Dieudonne FX, Marion A, Marie PJ, et al (2012). Targeted inhibition of T-cell factor activity promotes syndecan-2 expression and sensitization to doxorubicin in osteosarcoma cells and bone tumors in mice. J Bone Miner Res, 27, 2118-29. https://doi.org/10.1002/jbmr.1650
- Dorfman HD, Czerniak B (1995). Bone cancers. Cancer, 75, 203-10. https://doi.org/10.1002/1097-0142(19950101)75:1+<203::AID-CNCR2820751308>3.0.CO;2-V
- Ek ET, Dass CR, Choong PF (2006). PEDF: a potential molecular therapeutic target with multiple anti-cancer activities. Trends Mol Med, 12, 497-502. https://doi.org/10.1016/j.molmed.2006.08.009
- Ek ET, Dass CR, Choong PF (2006). Pigment epithelium-derived factor: a multimodal tumor inhibitor. Mol Cancer Ther, 5, 1641-6. https://doi.org/10.1158/1535-7163.MCT-06-0107
- Ek ET, Dass CR, Contreras KG, et al (2007). Pigment epithelium-derived factor overexpression inhibits orthotopic osteosarcoma growth, angiogenesis and metastasis. Cancer Gene Ther, 14, 616-26. https://doi.org/10.1038/sj.cgt.7701044
- Evans DB, Hipskind RA, Bilbe G (1996). Analysis of signaling pathways used by parathyroid hormone to activate the c-fos gene in human SaOS2 osteoblast-like cells. J Bone Miner Res, 11, 1066-74.
- Ferrari S, Smeland S, Mercuri M, et al (2005). Neoadjuvant chemotherapy with high-dose Ifosfamide, high-dose methotrexate, cisplatin, and doxorubicin for patients with localized osteosarcoma of the extremity: a joint study by the Italian and Scandinavian Sarcoma Groups. J Clin Oncol, 23, 8845-52. https://doi.org/10.1200/JCO.2004.00.5785
- Flores RJ, Li Y, Yu A, et al (2012). A systems biology approach reveals common metastatic pathways in osteosarcoma. BMC Syst Biol, 6, 50. https://doi.org/10.1186/1752-0509-6-50
- Florio M, Hernandez MC, Yang H, et al (1998). Id2 promotes apoptosis by a novel mechanism independent of dimerization to basic helix-loop-helix factors. Mol Cell Biol, 18, 5435-44.
- Foukas AF, Deshmukh NS, Grimer RJ, et al (2002). Stage-IIB osteosarcomas around the knee. A study of MMP-9 in surviving tumour cells. J Bone Joint Surg Br, 84, 706-11. https://doi.org/10.1302/0301-620X.84B5.12512
- Fu W, Ma L, Chu B, et al (2011). The cyclin-dependent kinase inhibitor SCH 727965 (dinacliclib) induces the apoptosis of osteosarcoma cells. Mol Cancer Ther, 10, 1018-27. https://doi.org/10.1158/1535-7163.MCT-11-0167
- Gong C, Liao H, Wang J, et al (2012). LY294002 induces G0/G1 cell cycle arrest and apoptosis of cancer stem-like cells from human osteosarcoma via down-regulation of PI3K activity. Asian Pac J Cancer Prev, 13, 3103-7. https://doi.org/10.7314/APJCP.2012.13.7.3103
- Gorlick R, Huvos AG, Heller G, et al (1999). Expression of HER2/erbB-2 correlates with survival in osteosarcoma. J Clin Oncol, 17, 2781-8.
- Guo Y, Xie J, Rubin E, et al (2008). Frzb, a secreted Wnt antagonist, decreases growth and invasiveness of fibrosarcoma cells associated with inhibition of Met signaling. Cancer Res, 68, 3350-60. https://doi.org/10.1158/0008-5472.CAN-07-3220
- Gurney A, Axelrod F, Bond CJ, et al (2012). Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci USA, 109, 11717-22. https://doi.org/10.1073/pnas.1120068109
- Halin S, Wikstrom P, Rudolfsson SH, et al (2004). Decreased pigment epithelium-derived factor is associated with metastatic phenotype in human and rat prostate tumors. Cancer Res, 64, 5664-71. https://doi.org/10.1158/0008-5472.CAN-04-0835
- Harting MT, Blakely ML (2006). Management of osteosarcoma pulmonary metastases. Semin Pediatr Surg, 15, 25-9. https://doi.org/10.1053/j.sempedsurg.2005.11.005
- Haydon RC, Deyrup A, Ishikawa A, et al (2002). Cytoplasmic and/or nuclear accumulation of the beta-catenin protein is a frequent event in human osteosarcoma. Int J Cancer, 102, 338-42. https://doi.org/10.1002/ijc.10719
- He ML, Wu Y, Zhao JM, et al (2013). PIK3CA and AKT gene polymorphisms in susceptibility to osteosarcoma in a Chinese population. Asian Pac J Cancer Prev, 14, 5117-22. https://doi.org/10.7314/APJCP.2013.14.9.5117
- He Q, Liang CH, Lippard SJ (2000). Steroid hormones induce HMG1 overexpression and sensitize breast cancer cells to cisplatin and carboplatin. Proc Natl Acad Sci USA, 97, 5768-72. https://doi.org/10.1073/pnas.100108697
- Heikkila P, Teronen O, Hirn MY, et al (2003). Inhibition of matrix metalloproteinase-14 in osteosarcoma cells by clodronate. J Surg Res, 111, 45-52. https://doi.org/10.1016/S0022-4804(03)00086-6
- Hengartner MO (2000). The biochemistry of apoptosis. Nature, 407, 770-6. https://doi.org/10.1038/35037710
- Himelstein BP, Asada N, Carlton MR, et al (1998). Matrix metalloproteinase-9 (MMP-9) expression in childhood osseous osteosarcoma. Med Pediatr Oncol, 31, 471-4. https://doi.org/10.1002/(SICI)1096-911X(199812)31:6<471::AID-MPO2>3.0.CO;2-M
- Hirotsu M, Setoguchi T, Sasaki H, et al (2010). Smoothened as a new therapeutic target for human osteosarcoma. Mol Cancer, 9, 5. https://doi.org/10.1186/1476-4598-9-5
- Hoeflich KP, Luo J, Rubie EA, et al (2000). Requirement for glycogen synthase kinase-3beta in cell survival and NFkappaB activation. Nature, 406, 86-90. https://doi.org/10.1038/35017574
- Hsieh JC, Kodjabachian L, Rebbert ML, et al (1999). A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature, 398, 431-6. https://doi.org/10.1038/18899
- Hu B, Mitra J, van den Heuvel S, et al (2001). S and G2 phase roles for Cdk2 revealed by inducible expression of a dominant-negative mutant in human cells. Mol Cell Biol, 21, 2755-66. https://doi.org/10.1128/MCB.21.8.2755-2766.2001
- Huang CY, Fong YC, Lee CY, et al (2009). CCL5 increases lung cancer migration via PI3K, Akt and NF-kappaB pathways. Biochem Pharmacol, 77, 794-803. https://doi.org/10.1016/j.bcp.2008.11.014
- Huang J, Liu K, Yu Y, et al (2012). Targeting HMGB1-mediated autophagy as a novel therapeutic strategy for osteosarcoma. Autophagy, 8, 275-7. https://doi.org/10.4161/auto.8.2.18940
- Huang J, Ni J, Liu K, et al (2012). HMGB1 promotes drug resistance in osteosarcoma. Cancer Res, 72, 230-8. https://doi.org/10.1158/0008-5472.CAN-11-2001
- Huangfu D, Anderson KV (2005). Cilia and Hedgehog responsiveness in the mouse. Proc Natl Acad Sci USA, 102, 11325-30. https://doi.org/10.1073/pnas.0505328102
- Huangfu D, Liu A, Rakeman AS, et al (2003). Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature, 426, 83-7. https://doi.org/10.1038/nature02061
- Hughes DP (2009). Strategies for the targeted delivery of therapeutics for osteosarcoma. Expert Opin Drug Deliv, 6, 1311-21. https://doi.org/10.1517/17425240903280422
- Iavarone A, Garg P, Lasorella A, et al (1994). The helix-loophelix protein Id-2 enhances cell proliferation and binds to the retinoblastoma protein. Genes Dev, 8, 1270-84. https://doi.org/10.1101/gad.8.11.1270
- Itoh Y (2006). MT1-MMP: a key regulator of cell migration in tissue. IUBMB Life, 58, 589-96. https://doi.org/10.1080/15216540600962818
- Jin J, Cai L, Liu ZM, et al (2013). miRNA-218 inhibits osteosarcoma cell migration and invasion by downregulating of TIAM1, MMP2 and MMP9. Asian Pac J Cancer Prev, 14, 3681-4. https://doi.org/10.7314/APJCP.2013.14.6.3681
- Jin S, Pang RP, Shen JN, et al (2007). Grifolin induces apoptosis via inhibition of PI3K/AKT signalling pathway in human osteosarcoma cells. Apoptosis, 12, 1317-26. https://doi.org/10.1007/s10495-007-0062-z
- Jung Y, Lippard SJ (2003). Nature of full-length HMGB1 binding to cisplatin-modified DNA. Biochemistry, 42, 2664-71. https://doi.org/10.1021/bi026972w
- Kager L, Zoubek A, Potschger U, et al (2003). Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. J Clin Oncol, 21, 2011-8. https://doi.org/10.1200/JCO.2003.08.132
- Kansara M, Thomas DM (2007). Molecular pathogenesis of osteosarcoma. DNA Cell Biol, 26, 1-18. https://doi.org/10.1089/dna.2006.0505
- Kartalou M, Essigmann JM (2001). Recognition of cisplatin adducts by cellular proteins. Mutat Res, 478, 1-21. https://doi.org/10.1016/S0027-5107(01)00142-7
- Kasparkova J, Delalande O, Stros M, et al (2003). Recognition of DNA interstrand cross-link of antitumor cisplatin by HMGB1 protein. Biochemistry, 42, 1234-44. https://doi.org/10.1021/bi026695t
- Kawano Y, Kypta R (2003). Secreted antagonists of the Wnt signalling pathway. J Cell Sci, 116, 2627-34. https://doi.org/10.1242/jcs.00623
- Kido A, Tsutsumi M, Iki K, et al (1999). Overexpression of matrix metalloproteinase (MMP)-9 correlates with metastatic potency of spontaneous and 4-hydroxyaminoquinoline 1-oxide (4-HAQO)-induced transplantable osteosarcomas in rats. Cancer Lett, 137, 209-16. https://doi.org/10.1016/S0304-3835(98)00368-1
- Kim MR, Zhou L, Park BH, et al (2011). Induction of G (2)/M arrest and apoptosis by sulforaphane in human osteosarcoma U2-OS cells. Mol Med Rep, 4, 929-34.
- Kim SJ, Choi JA, Lee SH, et al (2004). Imaging findings of extrapulmonary metastases of osteosarcoma. Clin Imaging, 28, 291-300. https://doi.org/10.1016/S0899-7071(03)00206-7
- Kim SM, Lee H, Park YS, et al (2012). ERK5 regulates invasiveness of osteosarcoma by inducing MMP-9. J Orthop Res, 30, 1040-4. https://doi.org/10.1002/jor.22025
- Koyama T, Suzuki H, Imakiire A, et al (2004). Id3-mediated enhancement of cisplatin-induced apoptosis in a sarcoma cell line MG-63. Anticancer Res, 24, 1519-24.
- Kulbe H, Levinson NR, Balkwill F, et al (2004). The chemokine network in cancer-much more than directing cell movement. Int J Dev Biol, 48, 489-96. https://doi.org/10.1387/ijdb.041814hk
- Lambert LA, Qiao N, Hunt KK, et al (2008). Autophagy: a novel mechanism of synergistic cytotoxicity between doxorubicin and roscovitine in a sarcoma model. Cancer Res, 68, 7966-74. https://doi.org/10.1158/0008-5472.CAN-08-1333
- Lengner CJ, Steinman HA, Gagnon J, et al (2006). Osteoblast differentiation and skeletal development are regulated by Mdm2-p53 signaling. J Cell Biol, 172, 909-21. https://doi.org/10.1083/jcb.200508130
- Lin YC, You L, Xu Z, et al (2006). Wnt signaling activation and WIF-1 silencing in nasopharyngeal cancer cell lines. Biochem Biophys Res Commun, 341, 635-40. https://doi.org/10.1016/j.bbrc.2005.12.220
- Liu B, Shi ZL, Feng J, et al (2008). Celecoxib, a cyclooxygenase-2 inhibitor, induces apoptosis in human osteosarcoma cell line MG-63 via down-regulation of PI3K/Akt. Cell Biol Int, 32, 494-501. https://doi.org/10.1016/j.cellbi.2007.10.008
- Longhi A, Errani C, De Paolis M, et al (2006). Primary bone osteosarcoma in the pediatric age: state of the art. Cancer Treat Rev, 32, 423-36. https://doi.org/10.1016/j.ctrv.2006.05.005
- Lu B, Nakamura T, Inouye K, et al (2012). Novel role of PKR in inflammasome activation and HMGB1 release. Nature, 488, 670-4. https://doi.org/10.1038/nature11290
- Luboshits G, Shina S, Kaplan O, et al (1999). Elevated expression of the CC chemokine regulated on activation, normal T cell expressed and secreted (RANTES) in advanced breast carcinoma. Cancer Res, 59, 4681-7.
- Luk F, Yu Y, Walsh WR, et al (2011). IGF1R-targeted therapy and its enhancement of doxorubicin chemosensitivity in human osteosarcoma cell lines. Cancer Invest, 29, 521-32. https://doi.org/10.3109/07357907.2011.606252
- Ma Q, Zhou Y, Ma B, et al (2012). The clinical value of CXCR4, HER2 and CD44 in human osteosarcoma: A pilot study. Oncol Lett, 3, 797-801.
- Maik-Rachline G, Shaltiel S, Seger R (2005). Extracellular phosphorylation converts pigment epithelium-derived factor from a neurotrophic to an antiangiogenic factor. Blood, 105, 670-8. https://doi.org/10.1182/blood-2004-04-1569
- Mankin HJ, Hornicek FJ, Rosenberg AE, et al (2004). Survival data for 648 patients with osteosarcoma treated at one institution. Clin Orthop Relat Res, 429 286-91. https://doi.org/10.1097/01.blo.0000145991.65770.e6
- Marion A, Dieudonne FX, Patino-Garcia A, et al (2012). Calpain-6 is an endothelin-1 signaling dependent protective factor in chemoresistant osteosarcoma. Int J Cancer, 130, 2514-25. https://doi.org/10.1002/ijc.26246
- Matsubara K, Fukushima S, Akane A, et al (1992). Increased urinary morphine, codeine and tetrahydropapaveroline in parkinsonian patient undergoing L- 3 , 4-dihydroxyphenylalanine therapy: a possible biosynthetic pathway of morphine from L-3, 4-dihydroxyphenylalanine in humans. J Pharmacol Exp Ther, 260, 974-8.
- Matsumoto K, Ishikawa H, Nishimura D, et al (2004). Antiangiogenic property of pigment epithelium-derived factor in hepatocellular carcinoma. Hepatology, 40, 252-9. https://doi.org/10.1002/hep.20259
- McNeill H, Woodgett JR (2010). When pathways collide: collaboration and connivance among signalling proteins in development. Nat Rev Mol Cell Biol, 11, 404-13. https://doi.org/10.1038/nrm2902
- Messerschmitt PJ, Garcia RM, Abdul-Karim FW, et al (2009). Osteosarcoma. J Am Acad Orthop Surg, 17, 515-27.
- Meyer B, Murua Escobar H, Hauke S, et al (2004). Expression pattern of the HMGB1 gene in sarcomas of the dog. Anticancer Res, 24, 707-10.
- Mialou V, Philip T, Kalifa C, et al (2005). Metastatic osteosarcoma at diagnosis: prognostic factors and longterm outcome-the French pediatric experience. Cancer, 104, 1100-9. https://doi.org/10.1002/cncr.21263
- Mirabello L, Troisi RJ, Savage SA (2009). Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer, 115, 1531-43. https://doi.org/10.1002/cncr.24121
- Mohseny AB, Xiao W, Carvalho R, et al (2012). An osteosarcoma zebrafish model implicates Mmp-19 and Ets-1 as well as reduced host immune response in angiogenesis and migration. J Pathol, 227, 245-53. https://doi.org/10.1002/path.3998
- Moll UM, Zaika A (2001). Nuclear and mitochondrial apoptotic pathways of p53. FEBS Lett, 493, 65-9. https://doi.org/10.1016/S0014-5793(01)02284-0
- Murray AR, Ma JX (2010). PEDF as a treatment for cervical cancer. Cancer Biol Ther, 9, 975-7. https://doi.org/10.4161/cbt.9.12.11985
- Nagao H, Ijiri K, Hirotsu M, et al (2011). Role of GLI2 in the growth of human osteosarcoma. J Pathol, 224, 169-79. https://doi.org/10.1002/path.2880
- Nelson AR, Fingleton B, Rothenberg ML, et al (2000). Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol, 18, 1135-49.
- Ouellet V, Siegel PM (2012). CCN3 modulates bone turnover and is a novel regulator of skeletal metastasis. J Cell Commun Signal, 6, 73-85. https://doi.org/10.1007/s12079-012-0161-7
- Pakos EE, Ioannidis JP (2003). The association of P-glycoprotein with response to chemotherapy and clinical outcome in patients with osteosarcoma. A meta-analysis. Cancer, 98, 581-9. https://doi.org/10.1002/cncr.11546
- Perez J, Bardin C, Rigal C, et al (2011). Anti-MDR1 siRNA restores chemosensitivity in chemoresistant breast carcinoma and osteosarcoma cell lines. Anticancer Res, 31, 2813-20.
- Pil PM, Lippard SJ (1992). Specific binding of chromosomal protein HMG1 to DNA damaged by the anticancer drug cisplatin. Science, 256, 234-7. https://doi.org/10.1126/science.1566071
- Rasola A, Sciacovelli M, Chiara F, et al (2010). Activation of mitochondrial ERK protects cancer cells from death through inhibition of the permeability transition. Proc Natl Acad Sci USA, 107, 726-31. https://doi.org/10.1073/pnas.0912742107
- Rengan R, Mick R, Pryma D, et al (2012). A phase I trial of the HIV protease inhibitor nelfinavir with concurrent chemoradiotherapy for unresectable stage IIIA/IIIB nonsmall cell lung cancer: a report of toxicities and clinical response. J Thorac Oncol, 7, 709-15. https://doi.org/10.1097/JTO.0b013e3182435aa6
- Ritter J, Bielack SS (2010). Osteosarcoma. Ann Oncol, 21, 320-5.
- Romashkova JA, Makarov SS (1999). NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature, 401, 86-90. https://doi.org/10.1038/43474
- Roundhill EA, Burchill SA (2012). Detection and characterisation of multi-drug resistance protein 1 (MRP-1) in human mitochondria. Br J Cancer, 106, 1224-33. https://doi.org/10.1038/bjc.2012.40
- Roy HK, Olusola BF, Clemens DL, et al (2002). AKT protooncogene overexpression is an early event during sporadic colon carcinogenesis. Carcinogenesis, 23, 201-5. https://doi.org/10.1093/carcin/23.1.201
- Rubin EM, Guo Y, Tu K, et al (2010). Wnt inhibitory factor 1 decreases tumorigenesis and metastasis in osteosarcoma. Mol Cancer Ther, 9, 731-41. https://doi.org/10.1158/1535-7163.MCT-09-0147
- Rubin LL, de Sauvage FJ (2006). Targeting the Hedgehog pathway in cancer. Nat Rev Drug Discov, 5, 1026-33. https://doi.org/10.1038/nrd2086
- Ruiz i Altaba A (1997). Catching a Gli-mpse of Hedgehog. Cell, 90, 193-6. https://doi.org/10.1016/S0092-8674(00)80325-6
- Santamarina M, Hernandez G, Zalvide J (2008). CDK redundancy guarantees cell cycle progression in Rb-negative tumor cells independently of their p16 status. Cell Cycle, 7, 1962-72. https://doi.org/10.4161/cc.7.13.6071
- Sasaki K, Hitora T, Nakamura O, et al (2011). The role of MAPK pathway in bone and soft tissue tumors. Anticancer Res, 31, 549-53.
- Schwartz CL, Gorlick R, Teot L, et al (2007). Multiple drug resistance in osteogenic sarcoma: INT0133 from the Children's Oncology Group. J Clin Oncol, 25, 2057-62. https://doi.org/10.1200/JCO.2006.07.7776
- Scrace SF, Kierstan P, Borgognoni J, et al (2008). Transient treatment with CDK inhibitors eliminates proliferative potential even when their abilities to evoke apoptosis and DNA damage are blocked. Cell Cycle, 7, 3898-907. https://doi.org/10.4161/cc.7.24.7345
- Senderowicz AM (2003). Small-molecule cyclin-dependent kinase modulators. Oncogene, 22, 6609-20. https://doi.org/10.1038/sj.onc.1206954
- Serra M, Picci P, Ferrari S, et al (2007). Prognostic value of P-glycoprotein in high-grade osteosarcoma. J Clin Oncol, 25, 4858-60. https://doi.org/10.1200/JCO.2007.13.0534
- Serra M, Scotlandi K, Reverter-Branchat G, et al (2003). Value of P-glycoprotein and clinicopathologic factors as the basis for new treatment strategies in high-grade osteosarcoma of the extremities. J Clin Oncol, 21, 536-42. https://doi.org/10.1200/JCO.2003.03.144
- Shida D, Takabe K, Kapitonov D, et al (2008). Targeting SphK1 as a new strategy against cancer. Curr Drug Targets, 9, 662-73. https://doi.org/10.2174/138945008785132402
- Smeland S, Muller C, Alvegard TA, et al (2003). Scandinavian Sarcoma Group Osteosarcoma Study SSG VIII: prognostic factors for outcome and the role of replacement salvage chemotherapy for poor histological responders. Eur J Cancer, 39, 488-94. https://doi.org/10.1016/S0959-8049(02)00747-5
- Strasser A, O'Connor L, Dixit VM (2000). Apoptosis signaling. Annu Rev Biochem, 69, 217-45. https://doi.org/10.1146/annurev.biochem.69.1.217
- T L, L FH, Ak R, Knigge U, U FR (2014). Primary hyperparathyroidism in young people. When should we perform genetic testing for multiple endocrine neoplasia 1 (MEN-1)? J Clin Endocrinol Metab, (in press).
- Taipale J, Cooper MK, Maiti T, et al (2002). Patched acts catalytically to suppress the activity of Smoothened. Nature, 418, 892-7. https://doi.org/10.1038/nature00989
- Tang QL, Xie XB, Wang J, et al (2012). Glycogen synthase kinase-3beta, NF-kappaB signaling, and tumorigenesis of human osteosarcoma. J Natl Cancer Inst, 104, 749-63. https://doi.org/10.1093/jnci/djs210
- Teo H, Ghosh S, Luesch H, et al (2010). Telomere-independent Rap1 is an IKK adaptor and regulates NF-kappaB-dependent gene expression. Nat Cell Biol, 12, 758-67. https://doi.org/10.1038/ncb2080
- Uchibori M, Nishida Y, Nagasaka T, et al (2006). Increased expression of membrane-type matrix metalloproteinase-1 is correlated with poor prognosis in patients with osteosarcoma. Int J Oncol, 28, 33-42.
- Uehara H, Miyamoto M, Kato K, et al (2004). Expression of pigment epithelium-derived factor decreases liver metastasis and correlates with favorable prognosis for patients with ductal pancreatic adenocarcinoma. Cancer Res, 64, 3533-7. https://doi.org/10.1158/0008-5472.CAN-03-3725
- Vadas M, Xia P, McCaughan G, et al (2008). The role of sphingosine kinase 1 in cancer: oncogene or non-oncogene addiction? Biochim Biophys Acta, 1781, 442-7. https://doi.org/10.1016/j.bbalip.2008.06.007
- van Lohuizen M, Verbeek S, Scheijen B, et al (1991). Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell, 65, 737-52. https://doi.org/10.1016/0092-8674(91)90382-9
- Vivanco I, Sawyers CL (2002). The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer, 2, 489-501. https://doi.org/10.1038/nrc839
- Wang SW, Wu HH, Liu SC, et al (2012). CCL5 and CCR5 interaction promotes cell motility in human osteosarcoma. PLoS One, 7, e35101. https://doi.org/10.1371/journal.pone.0035101
- Weeraratna AT, Jiang Y, Hostetter G, et al (2002). Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell, 1, 279-88. https://doi.org/10.1016/S1535-6108(02)00045-4
- Whelan JS, Jinks RC, McTiernan A, et al (2012). Survival from high-grade localised extremity osteosarcoma: combined results and prognostic factors from three European Osteosarcoma Intergroup randomised controlled trials. Ann Oncol, 23, 1607-16. https://doi.org/10.1093/annonc/mdr491
- Wissmann C, Wild PJ, Kaiser S, et al (2003). WIF1, a component of the Wnt pathway, is down-regulated in prostate, breast, lung, and bladder cancer. J Pathol, 201, 204-12. https://doi.org/10.1002/path.1449
- Wolf R, Wolf RF, Hoekstra HJ (1999). Recurrent, multiple, calcified soft tissue metastases from osteogenic sarcoma without pulmonary involvement. Skeletal Radiol, 28, 710-3. https://doi.org/10.1007/s002560050578
- Woodgett JR (2012). Can a two-faced kinase be exploited for osteosarcoma? J Natl Cancer Inst, 104, 722-3. https://doi.org/10.1093/jnci/djs223
- Wu B, Crampton SP, Hughes CC (2007). Wnt signaling induces matrix metalloproteinase expression and regulates T cell transmigration. Immunity, 26, 227-39. https://doi.org/10.1016/j.immuni.2006.12.007
- Wu Z, Min L, Chen D, et al (2011). Overexpression of BMI-1 promotes cell growth and resistance to cisplatin treatment in osteosarcoma. PLoS One, 6, e14648. https://doi.org/10.1371/journal.pone.0014648
- Yao C, Wu S, Li D, et al (2012). Co-administration phenoxodiol with doxorubicin synergistically inhibit the activity of sphingosine kinase-1 (SphK1), a potential oncogene of osteosarcoma, to suppress osteosarcoma cell growth both in vivo and in vitro. Mol Oncol, 6, 392-404. https://doi.org/10.1016/j.molonc.2012.04.002
- Yu W, Shun MC, Anderson K, et al (2006). alpha-TEA inhibits survival and enhances death pathways in cisplatin sensitive and resistant human ovarian cancer cells. Apoptosis, 11, 1813-23. https://doi.org/10.1007/s10495-006-9234-5
- Yu Y, Luk F, Yang JL, et al (2011). Ras/Raf/MEK/ERK pathway is associated with lung metastasis of osteosarcoma in an orthotopic mouse model. Anticancer Res, 31, 1147-52.
- Zamble DB, Mu D, Reardon JT, et al (1996). Repair of cisplatin--DNA adducts by the mammalian excision nuclease. Biochemistry, 35, 10004-13. https://doi.org/10.1021/bi960453+
- Zhang F, Chen A, Chen J, et al (2011). SiRNA-mediated silencing of beta-catenin suppresses invasion and chemosensitivity to doxorubicin in MG-63 osteosarcoma cells. Asian Pac J Cancer Prev, 12, 239-45.
- Zi X, Guo Y, Simoneau AR, et al (2005). Expression of Frzb/secreted Frizzled-related protein 3, a secreted Wnt antagonist, in human androgen-independent prostate cancer PC-3 cells suppresses tumor growth and cellular invasiveness. Cancer Res, 65, 9762-70. https://doi.org/10.1158/0008-5472.CAN-05-0103
Cited by
- Analysis of Gene Expression in Cyclooxygenase-2-Overexpressed Human Osteosarcoma Cell Lines vol.12, pp.4, 2014, https://doi.org/10.5808/GI.2014.12.4.247
- Gemcitabine for the Treatment of Patients with Osteosarcoma vol.15, pp.17, 2014, https://doi.org/10.7314/APJCP.2014.15.17.7159
- miR-9 Modulates Osteosarcoma Cell Growth by Targeting the GCIP Tumor Suppressor vol.16, pp.11, 2015, https://doi.org/10.7314/APJCP.2015.16.11.4509
- Quantitative Assessment of the Association between ABC Polymorphisms and Osteosarcoma Response: a Meta-analysis vol.16, pp.11, 2015, https://doi.org/10.7314/APJCP.2015.16.11.4659
- pathway is associated with Advanced Ovarian Cancer in Saudi Patients vol.16, pp.14, 2015, https://doi.org/10.7314/APJCP.2015.16.14.5807
- Short hairpin RNA (shRNA) of type 2 interleukin-1 receptor (IL1R2) inhibits the proliferation of human osteosarcoma U-2 OS cells vol.32, pp.1, 2015, https://doi.org/10.1007/s12032-014-0364-2
- DEC2 expression is positively correlated with HIF-1 activation and the invasiveness of human osteosarcomas vol.34, pp.1, 2015, https://doi.org/10.1186/s13046-015-0135-8
- miR-221 increases osteosarcoma cell proliferation, invasion and migration partly through the downregulation of PTEN vol.36, pp.5, 2015, https://doi.org/10.3892/ijmm.2015.2352
- miR-155 promotes the growth of osteosarcoma in a HBP1-dependent mechanism vol.403, pp.1-2, 2015, https://doi.org/10.1007/s11010-015-2344-z
- Combination of Hedgehog inhibitors and standard anticancer agents synergistically prevent osteosarcoma growth vol.48, pp.1, 2016, https://doi.org/10.3892/ijo.2015.3236
- MicroRNA-33a-5p suppresses growth of osteosarcoma cells and is downregulated in human osteosarcoma pp.1792-1082, 2015, https://doi.org/10.3892/ol.2015.3503
- The associations of vascular endothelial growth factor gene polymorphisms with susceptibility to osteosarcoma: evidence from a meta-analysis vol.26, pp.5, 2016, https://doi.org/10.1111/ecc.12513
- Tumstatin induces apoptosis and stimulates phosphorylation of p65NF-κB in human osteoblastic osteosarcoma Saos-2 cells vol.35, pp.6, 2016, https://doi.org/10.3892/or.2016.4762
- Inhibition of casein kinase 2 prevents growth of human osteosarcoma vol.37, pp.2, 2017, https://doi.org/10.3892/or.2016.5310
- Mesenchymal stem cells: From stem cells to sarcomas vol.40, pp.6, 2016, https://doi.org/10.1002/cbin.10603
- Molecular mechanisms and microRNAs in osteosarcoma pathogenesis vol.81, pp.4, 2016, https://doi.org/10.1134/S0006297916040027
- Involvement of c-Fos in cell proliferation, migration, and invasion in osteosarcoma cells accompanied by altered expression of Wnt2 and Fzd9 vol.12, pp.6, 2017, https://doi.org/10.1371/journal.pone.0180558
- Genetic polymorphisms in ERCC1 and ERCC2 genes are associated with response to chemotherapy in osteosarcoma patients among Chinese population: a meta-analysis vol.15, pp.1, 2017, https://doi.org/10.1186/s12957-017-1142-3
- Curcumin inhibits hypoxia-induced proliferation and invasion of MG-63 osteosarcoma cells via downregulating Notch1 vol.15, pp.4, 2017, https://doi.org/10.3892/mmr.2017.6159
- Overexpression of miR-214 promotes the progression of human osteosarcoma by regulating the Wnt/β-catenin signaling pathway vol.15, pp.4, 2017, https://doi.org/10.3892/mmr.2017.6203
- SLC3A2 is upregulated in human osteosarcoma and promotes tumor growth through the PI3K/Akt signaling pathway vol.37, pp.5, 2017, https://doi.org/10.3892/or.2017.5530
- LDOC1 regulates Wnt5a expression and osteosarcoma cell metastasis and is correlated with the survival of osteosarcoma patients vol.39, pp.2, 2017, https://doi.org/10.1177/1010428317691188
- Anticancer efficacy of the hypoxia-activated prodrug evofosfamide is enhanced in combination with proapoptotic receptor agonists against osteosarcoma vol.6, pp.9, 2017, https://doi.org/10.1002/cam4.1115
- Biological analysis of cancer specific microRNAs on function modeling in osteosarcoma vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-05819-7
- In vitro effect of microRNA-107 targeting Dkk-1 by regulation of Wnt/β-catenin signaling pathway in osteosarcoma vol.96, pp.27, 2017, https://doi.org/10.1097/MD.0000000000007245
- MicroRNA-26a inhibits osteosarcoma cell proliferation by targeting IGF-1 vol.3, pp.1, 2015, https://doi.org/10.1038/boneres.2015.33
- Identification of candidate drugs for the treatment of metastatic osteosarcoma through a subpathway analysis method vol.13, pp.6, 2017, https://doi.org/10.3892/ol.2017.5953
- miR-187 inhibits tumor growth and invasion by directly targeting MAPK12 in osteosarcoma vol.14, pp.2, 2017, https://doi.org/10.3892/etm.2017.4624
- Relevance of 3d culture systems to study osteosarcoma environment vol.37, pp.1, 2018, https://doi.org/10.1186/s13046-017-0663-5
- Green synthesis of silver nanoparticles toward bio and medical applications: review study pp.2169-141X, 2018, https://doi.org/10.1080/21691401.2018.1517769
- MicroRNA-645 promotes metastasis of osteosarcoma via targeting tumor suppressor NM23 nucleoside diphosphate kinase 2 pp.03051870, 2018, https://doi.org/10.1111/1440-1681.13006
- LncRNA MEG3 negatively modified osteosarcoma development through regulation of miR-361-5p and FoxM1 pp.00219541, 2019, https://doi.org/10.1002/jcp.28026