DOI QR코드

DOI QR Code

The Evolving Epidemiology of Serotype Distribution and Antimicrobial Resistance of Streptococcus pneumoniae Strains Isolated from Adults in Crete, Greece, 2009-2016

  • Maraki, Sofia (Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion) ;
  • Mavromanolaki, Viktoria Eirini (University of Crete Medical School) ;
  • Stafylaki, Dimitra (Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion) ;
  • Hamilos, George (Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion) ;
  • Samonis, George (Infectious Diseases Unit, University Hospital of Heraklion and University of Crete Medical School)
  • Received : 2018.09.15
  • Accepted : 2018.12.03
  • Published : 2018.12.31

Abstract

Background: Pneumococcal disease is a major cause of morbidity and mortality worldwide, especially in patients with comorbidities and advanced age. This study evaluated trends in epidemiology of adult pneumococcal disease in Crete, Greece, by identifying serotype distribution and antimicrobial resistance of consecutive Streptococcus pneumoniae strains isolated from adults during an 8-year time period (2009-2016) and the indirect effect of the infant pneumococcal higher-valent conjugate vaccines 10-valent pneumococcal conjugate vaccine (PCV10) and 13-valent pneumococcal conjugate vaccine (PCV13). Materials and Methods: Antimicrobial susceptibility was performed by E-test and serotyping by Quellung reaction. Multidrug resistance (MDR) was defined as non-susceptibility to penicillin (PNSP) combined with resistance to ${\geq}2$ non-${\beta}$-lactam antimicrobials. Results: A total of 135 S. pneumoniae strains were isolated from adults during the study period. Twenty-one serotypes were identified with 17F, 15A, 3, 19A, and 11A, being the most common. The coverage rates of PCV10, and PCV13 were 17.8% and 37.8%, respectively. PCV13 serotypes decreased significantly from 68.4% in 2009 to 8.3% in 2016 (P = 0.002). The most important emerging non-PCV13 serotypes were 17F, 15A, and 11A, with 15A being strongly associated with antimicrobial resistance and MDR. Among all study isolates, penicillin-resistant and MDR strains represented 7.4% and 14.1%, respectively. Predominant PNSP serotypes were 19A (21.7%), 11A (17.4%), and 15A (17.4%). Erythromycin, clindamycin, tetracycline, trimethoprim-sulfamethoxazole, and levofloxacin resistant rates were 30.4%, 15.6%, 16.3%, 16.3%, and 1.5%, respectively. Conclusion: Although pneumococcal disease continues to be a health burden in adults in Crete, our study reveals a herd protection effect of the infant pneumococcal higher-valent conjugate vaccination. Surveillance of changes in serotype distribution and antimicrobial resistance among pneumococcal isolates are necessary to guide optimal prevention and treatment strategies.

Keywords

References

  1. Bogaert D, De Groot R, Hermans PW. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis 2004;4:144-54. https://doi.org/10.1016/S1473-3099(04)00938-7
  2. Musher DM. Streptococcus pneumoniae. In: Mandell GL, Bennett JE, Dolin R, eds. Principles and Practice of Infectious Diseases. 6th ed. New York: Elsevier, Churchill Livingstone; 2010;2623-42.
  3. Marrie TJ, Tyrrell GJ, Majumdar SR, Eurich DT. Effect of age on the manifestations and outcomes of invasive pneumococcal diseases in adults. Am J Med 2018;131:100.e1-7. https://doi.org/10.1016/j.amjmed.2017.06.039
  4. Shea KM, Edelsberg J, Weycker D, Farkouh RA, Strutton DR, Pelton SI. Rates of pneumococcal disease in adults with chronic medical conditions. Open Forum Infect Dis 2014;1:ofu024.
  5. Said MA, Johnson HL, Nonyane BA, Deloria-Knoll M, O'Brien KL; AGEDD Adult Pneumococcal Burden Study Team, Andreo F, Beovic B, Blanco S, Boersma WG, Boulware DR, Butler JC, Carratala J, Chang FY, Charles PG, Diaz AA, Dominguez J, Ehara N, Endeman H, Falco V, Falguera M, Fukushima K, Garcia- Vidal C, Genne D, Guchev IA, Gutierrez F, Hernes SS, Hoepelman AI, Hohenthal U, Johansson N, Kolek V, Kozlov RS, Lauderdale TL, Marekovic I, Masia M, Matta MA, Miro O, Murdoch DR, Nuermberger E, Paolini R, Perello R, Snijders D, Plecko V, Sorde R, Stralin K, van der Eerden MM, Vila-Corcoles A, Watt JP. Estimating the burden of pneumococcal pneumonia among adults: a systematic review and metaanalysis of diagnostic techniques. PLoS One 2013;8:e60273. https://doi.org/10.1371/journal.pone.0060273
  6. GBD 2015 LRI Collaborators. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory tract infections in 195 countries: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Infect Dis 2017;17:1133-61. https://doi.org/10.1016/S1473-3099(17)30396-1
  7. Welte T, Torres A, Nathwani D. Clinical and economic burden of community-acquired pneumonia among adults in Europe. Thorax 2012;67:71-9. https://doi.org/10.1136/thx.2009.129502
  8. Castiglia P. Recommendations for pneumococcal immunization outside routine childhood immunization programs in Western Europe. Adv Ther 2014;31:1011-44. https://doi.org/10.1007/s12325-014-0157-1
  9. Klugman KP. Herd protection induced by pneumococcal conjugate vaccine. Lancet Glob Health 2014;2:e365-6. https://doi.org/10.1016/S2214-109X(14)70241-4
  10. Huang SS, Johnson KM, Ray GT, Wroe P, Lieu TA, Moore MR, Zell ER, Linder JA, Grijalva CG, Metlay JP, Finkelstein JA. Healthcare utilization and cost of pneumococcal disease in the United States. Vaccine 2011;29:3398-412. https://doi.org/10.1016/j.vaccine.2011.02.088
  11. Maraki S, Mantadakis E, Samonis G. Serotype distribution and antimicrobial resistance of adult Streptococcus pneumoniae clinical isolates over the period 2001-2008 in Crete, Greece. Chemotherapy 2010;56:325-32. https://doi.org/10.1159/000320152
  12. Clinical Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty-sixth informational supplement. Wayne, Pa: CLSI; 2016.
  13. Tsaban G, Ben-Shimol S. Indirect (herd) protection, following pneumococcal conjugated vaccines introduction: A systematic review of the literature. Vaccine 2017;35:2882-91. https://doi.org/10.1016/j.vaccine.2017.04.032
  14. Tzanakaki G. National Meningitis Reference Laboratory Data 1993-2015. 2015. Available from: http://www.nsph.gr/files/001_Dimosias_Dioikitikis_Ygieinis/ EKAM/ApologismoiEKAM/Apol-2015-1.pdf [Accessed 23 June 2018].
  15. Regev-Yochay G, Katzir M, Strahilevitz J, Rahav G, Finn T, Miron D, Maor Y, Chazan B, Schindler Y, Dagan R; IAIPD group. The herd effects of infant PCV7/PCV13 sequential implementation on adult invasive pneumococcal disease, six years post implementation; a nationwide study in Israel. Vaccine 2017;35:2449-56. https://doi.org/10.1016/j.vaccine.2017.03.031
  16. Waight PA, Andrews NJ, Ladhani SN, Sheppard CL, Slack MP, Miller E. Effect of the 13-valent pneumococcal conjugate vaccine on invasive pneumococcal disease in England and Wales 4 years after its introduction: an observational cohort study. Lancet Infect Dis 2015;15:535-43. https://doi.org/10.1016/S1473-3099(15)70044-7
  17. Rodrigo C, Bewick T, Sheppard C, Greenwood S, Mckeever TM, Trotter CL, Slack M, George R, Lim WS. Impact of infant 13-valent pneumococcal conjugate vaccine on serotypes in adult pneumonia. Eur Respir J 2015;4:1632-41.
  18. Menendez R, Espana PP, Perez-Trallero E, Uranga A, Mendez R, Cilloniz C, Marimon JM, Cifuentes I, Mendez C, Torres A. The burden of PCV13 serotypes in hospitalized pneumococcal pneumonia in Spain using a novel urinary antigen detection test. CAPA study. Vaccine 2017;35:5264-70. https://doi.org/10.1016/j.vaccine.2017.08.007
  19. Espana PP, Menendez R, Torres A, Fernandez-Villar JA, Marimon JM, Martinez De La Fuente AP, Brusola AG, Reverte FM, Vasallo-Vidal F, Ercibengoa M, Cifuentes I, Mendez C. Differences in the burden of all-cause CAP due to PCV13 serotypes based in the different use of vaccine by regions in Spain (the CAPA study). 28th European Congress of Clinical Microbiology and Infectious Diseases; 2018 Apr 21-24;Madrid, Spain.
  20. WHO. Immunization, Vaccines and Biologicals - Data, statistics and graphics. Available from: http://www.who.int/immunization/monitoring_surveillance /data/en/ [Accessed 2 May 2018].
  21. Kazmierczak K, Hackel M, Henry LI, Kalamatas J, Hilton B, Sings H, Isturiz R. Distribution of Streptococcus pneumoniae serotypes among global population. 27th European Congress of Clinical Microbiology and Infectious Diseases; 2017 Apr 22-25; Vienna, Austria.
  22. Kazmierczak K, Hackel M, Kalamatas J, Hall-Murray C, Sings H, Isturiz R. Distribution of Streptococcus pneumoniae serotypes among non-sterile isolates from adults 18 years and older in Europe and the United States, 2014-2015. 27th European Congress of Clinical Microbiology and Infectious Diseases; 2017 Apr 22-25; Vienna, Austria.
  23. Horacio AN, Silva-Costa C, Lopes JP, Ramirez M, Melo-Cristino J; Portuguese Group for the Study of Streptococcal Infections. Serotype 3 remains the leading cause of invasive pneumococcal disease in adults in Portugal (2012-2014) despite continued reductions in other 13-valent conjugate vaccine serotypes. Front Microbiol 2016;7:1616.
  24. Corcoran M, Vickers I, Mereckiene J, Murchan S, Cotter S, Fitzgerald M, McElligott M, Cafferkey M, O'Flanagan D, Cunney R, Humphreys H. The epidemiology of invasive pneumococcal disease in older adults in the post-PCV era. Has there been a herd effect? Epidemiol Infect 2017;145:2390-9. https://doi.org/10.1017/S0950268817001194
  25. van der Linden M, Falkenhorst G, Perniciaro S, Imohl M. Effects of infant pneumococcal conjugate vaccination on serotype distribution in invasive pneumococcal disease among children and adults in Germany. PLoS One 2015;10:e0131494. https://doi.org/10.1371/journal.pone.0131494
  26. Izurieta P, Bahety P, Adegbola R, Clarke C, Hoet B, Andrews NJ, Waight PA, Burbidge P, Pearce E, Roalfe L, Zancolli M, Slack M, Ladhani SN, Miller E, Goldblatt D. Public health impact of pneumococcal conjugate vaccine infant immunization programs: assessment of invasive pneumococcal disease burden and serotype distribution. Expert Rev Vaccines 2018;17:479-93. https://doi.org/10.1080/14760584.2018.1413354
  27. Feikin DR, Kagucia EW, Loo JD, Link-Gelles R, Puhan MA, Cherian T, Levine OS, Whitney CG, O'Brien KL, Moore MR; Serotype Replacement Study Group. Serotype-specific changes in invasive pneumococcal disease after pneumococcal conjugate vaccine introduction: a pooled analysis of multiple surveillance sites. PLoS Med 2013;10:e1001517. https://doi.org/10.1371/journal.pmed.1001517
  28. Hausdorff WP, Hanage WP. Interim results of an ecological experiment - Conjugate vaccination against the pneumococcus and serotype replacement. Hum Vaccin Immunother 2016;12:358-74. https://doi.org/10.1080/21645515.2015.1118593
  29. Moore MR, Link-Gelles R, Schaffner W, Lynfield R, Lexau C, Bennett NM, Petit S, Zansky SM, Harrison LH, Reingold A, Miller L, Scherzinger K, Thomas A, Farley MM, Zell ER, Taylor TH Jr, Pondo T, Rodgers L, McGee L, Beall B, Jorgensen JH, Whitney CG. Effect of use of 13-valent pneumococcal conjugate vaccine in children on invasive pneumococcal disease in children and adults in the USA: analysis of multisite, population-based surveillance. Lancet Infect Dis 2015;15:301-9. https://doi.org/10.1016/S1473-3099(14)71081-3
  30. Hays C, Vermee Q, Agathine A, Dupuis A, Varon E, Poyart C, Ploy MC, Raymond J; and the ORP IIe de France Quest. Demonstration of the herd effect in adults after the implementation of pneumococcal vaccination with PCV13 in children. Eur J Clin Microbiol Infect Dis 2017;36:831-8. https://doi.org/10.1007/s10096-016-2868-5
  31. Falco V, Burgos J, Pahissa A. The spectrum of invasive pneumococcal disease in adults in the XXI century. Clin Pulm Med 2013;20:214-20. https://doi.org/10.1097/CPM.0b013e3182a2db89
  32. Dagan R, Juergens C, Trammel J, Patterson S, Greenberg D, Givon-Lavi N, Porat N, Gurtman A, Gruber WC, Scott DA. Efficacy of 13-valent pneumococcal conjugate vaccine (PCV13) versus that of 7-valent PCV (PCV7) against nasopharyngeal colonization of antibiotic-nonsusceptible Streptococcus pneumoniae. J Infect Dis 2015;211:1144-53. https://doi.org/10.1093/infdis/jiu576
  33. Woodhead M, Blasi F, Ewig S, Garau J, Huchon G, Ieven M, Ortqvist A, Schaberg T, Torres A, van der Heijden G, Read R, Verheij TJ; Joint Taskforce of the European Respiratory Society and European Society for Clinical Microbiology and Infectious Diseases. Guidelines for the management of adult lower respiratory tract infections--full version. Clin Microbiol Infect 2011;17 (Suppl 6):E1-59.
  34. Goossens H, Ferech M, Vander Stichele R, Elseviers M; ESAC Project Group. Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet 2005;365:579-87. https://doi.org/10.1016/S0140-6736(05)70799-6
  35. Imohl M, Reinert RR, van der Linden M. Antibiotic susceptibility rates of invasive pneumococci before and after the introduction of pneumococcal conjugate vaccination in Germany. Int J Med Microbiol 2015;305:776-83. https://doi.org/10.1016/j.ijmm.2015.08.031
  36. Mendes RE, Costello AJ, Jacobs MR, Biek D, Critchley IA, Jones RN. Serotype distribution and antimicrobial susceptibility of USA Streptococcus pneumoniae isolates collected prior to and post introduction of 13-valent pneumococcal conjugate vaccine. Diagn Microbiol Infect Dis 2014;80:19-25. https://doi.org/10.1016/j.diagmicrobio.2014.05.020
  37. Hauser C, Kronenberg A, Allemann A, Muhlemann K, Hilty M. Serotype/serogroup-specific antibiotic non-susceptibility of invasive and non-invasive Streptococcus pneumoniae, Switzerland, 2004 to 2014. Euro Surveill 2016;21:(21).
  38. Soeters HM, von Gottberg A, Cohen C, Quan V, Klugman KP. Trimethoprim-sulfamethoxazole prophylaxis and antibiotic nonsusceptibility in invasive pneumococcal disease. Antimicrob Agents Chemother 2012;56:1602-5. https://doi.org/10.1128/AAC.05813-11
  39. Cornick JE, Harris SR, Parry CM, Moore MJ, Jassi C, Kamng'ona A, Kulohoma B, Heyderman RS, Bentley SD, Everett DB. Genomic identification of a novel co-trimoxazole resistance genotype and its prevalence amongst Streptococcus pneumoniae in Malawi. J Antimicrob Chemother 2014;69:368-74. https://doi.org/10.1093/jac/dkt384

Cited by

  1. Epidemiology Characteristics of Streptococcus pneumoniae From Children With Pneumonia in Shanghai: A Retrospective Study vol.9, pp.None, 2019, https://doi.org/10.3389/fcimb.2019.00258
  2. Serotype Distribution and Antibiotic Susceptibility of Streptococcus pneumoniae Isolates in Tehran, Iran: A Surveillance Study vol.13, pp.None, 2020, https://doi.org/10.2147/idr.s234295
  3. Age and Location in Severity of COVID‐19 Pathology: Do Lactoferrin and Pneumococcal Vaccination Explain Low Infant Mortality and Regional Differences? vol.42, pp.11, 2020, https://doi.org/10.1002/bies.202000076
  4. Primary bacterial peritonitis caused by Streptococcus pneumoniae vol.13, pp.2, 2018, https://doi.org/10.4103/jgid.jgid_197_20
  5. The Role of Macrolides for the Management of Community-Acquired Pneumonia and Pneumonia by the Novel Coronavirus SARS-CoV-2 (COVID-19): A Position Paper by Four Medical Societies from Greece vol.10, pp.3, 2018, https://doi.org/10.1007/s40121-021-00471-1