• 제목/요약/키워드: Pathogen-related gene

검색결과 130건 처리시간 0.042초

Comparison of Autophagy mRNA Expression between Chronic Otitis Media With and Without Cholesteatoma

  • Jung, Junyang;Jung, Su Young;Kim, Myung Gu;Kim, Young Il;Kim, Sang Hoon;Yeo, Seung Geun
    • 대한청각학회지
    • /
    • 제24권4호
    • /
    • pp.191-197
    • /
    • 2020
  • Background and Objectives: Autophagy is known to be associated with pathogen infection. However, the expression of autophagy-related proteins has not been studied in chronic otitis media without cholesteatoma (COM) or with cholesteatoma (CholeOM). This study aimed to determine whether there is a difference between COM and CholeOM in autophagy-related gene mRNA expression. Subjects and Methods: For 47 patients with chronic otitis media, the inflammatory tissues were classified into granulation tissue (COM) or cholesteatoma (CholeOM) according to biopsy results. Results: PI3K mRNA expression (COM vs. CholeOM, mean±SD, 0.009±0.010 vs. 0.003±0.004; p=0.004) was lower, whereas Beclin-1 mRNA expression (0.089±0.107 vs. 0.176±0.163; p=0.034) was higher in the CholeOM group. Expression of PI3K mRNA in the CholeOM group was lower than that in the COM subgroups with presence of bacteria (0.022±0.019 vs. 0.001±0.001; p=0.001), otorrhea (0.049±0.068 vs. 0.003±0.004; p=0.004), and hearing loss over 40 dB (0.083±0.130 vs. 0.003±0.004; p=0.005). Conclusions: The data suggested that different autophagy proteins play important roles in chronic otitis media according to the presence or absence of cholesteatoma.

Fusobacterium nucleatum infection induces CSF3 expression through p38 MAPK and JNK signaling pathways in oral squamous cell carcinoma cells

  • Ahyoung Jo;Jung-Min Oh
    • International Journal of Oral Biology
    • /
    • 제49권1호
    • /
    • pp.1-9
    • /
    • 2024
  • Oral bacterial infections substantially affect the development of various periodontal diseases and oral cancers. However, the molecular mechanisms underlying the association between Fusobacterium nucleatum (F. nucleatum ), a major periodontitis (PT)-associated pathogen, and these diseases require extensive research. Previously, our RNA-sequencing analysis identified a few hundred differentially expressed genes in patients with PT and peri-implantitis (PI) than in healthy controls. Thus, in the present study using oral squamous cell carcinoma (OSCC) cells, we aimed to evaluate the effect of F. nucleatum infection on genes that are differentially regulated in patients with PT and PI. Human oral squamous cell carcinoma cell lines OSC-2O, HSC-4, and HN22 were used. These cells were infected with F. nucleatum at a multiplicity of infection of 100 for 3 hours at 37℃ in 5% CO2. Gene expression was then measured using reverse-transcription polymerase chain reaction. Among 18 genes tested, the expression of CSF3, an inflammation-related cytokine, was increased by F. nucleatum infection. Additionally, F. nucleatum infection increased the phosphorylation of AKT, p38 MAPK, and JNK in OSC-20 cells. Treatment with p38 MAPK (SB202190) and JNK (SP600125) inhibitors reduced the enhanced CSF3 expression induced by F. nucleatum infection. Overall, this study demonstrated that F. nucleatum promotes CSF3 expression in OSCC cells through p38 MAPK and JNK signaling pathways, suggesting that p38 MAPK and JNK inhibitors may help treat F. nucleatum-related periodontal diseases by suppressing CSF3 expression.

Morphological and Genetic Characteristics of Colletotrichum gloeosporioides Isolated from Newly Emerging Static-Symptom Anthracnose in Apple

  • Jeon, Yongho;Cheon, Wonsu
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2014년도 추계학술대회 및 정기총회
    • /
    • pp.34-34
    • /
    • 2014
  • Filamentous fungi of the genus Colletotrichum (teleomorph, Glomerella) are considered major plant pathogens worldwide. Cereals, legumes, vegetables, and fruit trees may be seriously affected by this pathogen (1). Colletotrichum species cause typical disease symptoms known as anthracnoses, characterized by sunken necrotic tissue, where orange conidial masses are produced. Anthracnose appears in both developing and mature plant tissues (2). We investigated disease occurrence in apple orchards from 2013 to 2014 in northern Gyeongbuk province, Korea. Typical anthracnose with advanced symptoms was observed in all apple orchards studied. Of late, static fruit spot symptoms are being observed in apple orchards. A small lesion, which does not expand further and remains static until the harvesting season, is observed at the beginning of fruit growth period. In our study, static symptoms, together with the typical symptoms, were observed on apples. The isolated fungus was tested for pathogenicity on cv. 'Fuji apple' (fully ripe fruits, unripe fruits, and cross-section of fruits) by inoculating the fruits with a conidial suspension ($10^5$ conidia/ml). In apple inoculated with typical anthracnose fungus, the anthracnose symptoms progressed, and dark lesions with salmon-colored masses of conidia were observed on fruit, which were also soft and sunken. However, in apple inoculated with fungi causing static symptoms, the size of the spots did not increase. Interestingly, the shape and size of the conidia and the shape of the appressoria of both types of fungi were found to be similar. The conidia of the two types of fungi were straight and cylindrical, with an obtuse apex. The culture and morphological characteristics of the conidia were similar to those of C. gloeosporioides (5). The conidia of C. gloeosporioides germinate and form appressoria in response to chemical signals such as host surface wax and the fruitripening hormone ethylene (3). In this study, the spores started to germinate 4 h after incubation with an ethephon suspension. Then, the germ tubes began to swell, and subsequently, differentiation into appressoria with dark thick walls was completed by 8 h. In advanced symptoms, fungal spores of virtually all the appressoria formed primary hyphae within 16 h. However, in the static-symptom fungus spores, no primary hyphae formed by 16 h. The two types of isolates exhibited different growth rates on medium containing apple pectin, Na polypectate, or glucose as the sole carbon. Static-symptom fungi had a >10% reduction in growth (apple pectin, 14.9%; Na polypectate, 27.7%; glucose, 10.4%). The fungal isolates were also genetically characterized by sequencing. ITS regions of rDNA, chitin synthase 1 (CHS1), actin (ACT), and ${\beta}$-tubulin (${\beta}t$) were amplified from isolates using primer pairs ITS 1 and ITS 4 (4), CHS-79F and CHS-354R, ACT-512F and ACT-783R, and T1 and ${\beta}t2$ (5), respectively. The resulting sequences showed 100% identity with sequences of C. gloeosporioides at KC493156, and the sequence of the ${\beta}$t gene showed 100% identity with C. gloeosporioides at JX009557.1. Therefore, sequence data from the four loci studied proves that the isolated pathogen is C. gloeosporioides. We also performed random amplified polymorphic DNA-PCR, which showed clearly differentiated subgroups of C. gloeosporioides genotypes. The clustering of these groups was highly related to the symptom types of the individual strains.

  • PDF

단삼에 의한 Candida albicans 바이오필름 발달의 억제 (Growth of Candida albicans Biofilm is Inhibited by Salvia miltiorrhiza)

  • 이흥식;김연희
    • 한국미생물·생명공학회지
    • /
    • 제47권3호
    • /
    • pp.465-472
    • /
    • 2019
  • Candida albicans는 기회감염을 유발하는 주요한 병원성 진균 중의 하나이다. 캔디다증 치료과정에서 항진균제에 대한 내성이 흔히 발견되는데, 그 이유는 Candida가 바이오필름을 형성할 수 있기 때문이다. 이전의 연구에서 우리는 단삼(Salvia miltiorriza)의 에탄올추출물이 세포막의 투과성을 변화시키고 세포벽 합성을 저해하여 항캔디다 활성을 나타냄을 밝혔다. 본 연구에서는 10개 C. albicans 임상균주가 형성한 초기단계의 바이오필름을 대상으로 XTT 환원분석법으로 대사활성을 측정하니, $78{\mu}g/ml$ 단삼 에탄올추출물에 의해 바이오필름의 대사활성이 평균 51.3% 감소되었다. C. albicans 세포들이 폴리스티렌 표면에 부착하거나 germ tube를 형성하는 과정에서의 단삼 에탄올추출물의 영향을 현미경으로 분석하니, $39{\mu}g/ml$ 단삼 에탄올추출물에 의해 부착된 세포의 밀도는 현저하게 감소하였으나 germ tube 형성은 거의 억제하지 못했다. 단삼 에탄올추출물이 C. albicans SC5314 세포의 균사에 특이적인 유전자 발현에 미치는 영향을 qPCR로 분석한 결과, EAP1은 34.7% (p < 0.001), ALS1은 45.0% (p < 0.001), ALS3는 48.1% (p < 0.001), ECE1은 21.3% (p = 0.006) 억제하였다. 결론적으로 단삼의 에탄올추출물은 초기단계의 C. albicans 바이오필름 발달을 효율적으로 저해하며, 이는 EAP1, ALS1, ALS3 유전자의 발현억제에 따른 세포부착 억제와 관련이 있다. 더불어 단삼 에탄올추출물의 C. albicans 세포막 기능저해와 세포벽 합성억제에 의한 구조변화 또한 세포부착단계에서의 바이오필름 발달억제에 기여할 것으로 추정된다.

전사인자 OsNAC58 과발현을 통한 벼 흰잎마름병 저항성 증진 벼 (Overexpression of rice NAC transcription factor OsNAC58 on increased resistance to bacterial leaf blight)

  • 박상렬;김혜선;이경실;황덕주;배신철;안일평;이서현;김선태
    • Journal of Plant Biotechnology
    • /
    • 제44권2호
    • /
    • pp.149-155
    • /
    • 2017
  • 벼는 중요한 식량작물이며 지속적으로 벼흰잎마름병균, 도열병균, 잎집무늬마름병균, 바이러스 등 여러 병원균에 의해 수확량이 영향을 받고 있다. 이들 중 Xanthomonas oryzae pv. oryzae (Xoo)에 의해 유발되는 벼흰잎마름병은 세계 벼 재배지역에 발병하여 막대한 피해를 주고 있어 문제가 되고 있다. 따라서 생물적/비생물적 스트레스 저항성에 관여한다고 알려져 있는 식물 특이 전사인자 중의 하나인 NAC(NAM, ATAF, and CUC) 전사인자를 이용하여 벼의 벼흰잎마름병에 대한 저항성을 증진시키고자 하였다. 본 연구에서는 벼에서 NAC 전사인자 중 하나인 OsNAC58 유전자를 분리해 냈으며 아미노산 서열을 바탕으로 분석해 본 결과이 유전자는 5개의 NAC전사인자 group 중에서도 stress와 많은 관련이 있다고 알려진 group III에 속하였다. 또한 세포 내 위치를 확인하기 위해 GFP와 융합한 단백질을 이용해 조사해 본 세포 내에서도 핵에 위치하는 것으로 조사되었다. OsNAC58 유전자의 생물학적 기능 분석을 위해 이 유전자를 과발현시킨 벼 형질전환체를 만들었다. 동진벼를 기준으로 보다 발현이 높은 13개 계통을 선발하였으며, 이들 계통에 벼흰잎마름병균을 접종하여 병저항성을 검정한 결과 동진벼에 비해 벼흰잎마름병에 대한 저항성이 크게 증대함을 보였다. 이것은 벼의 OsNAC58 유전자가 벼흰잎마름병균 침입 시 숙주인 벼 핵 내에서 벼의 병저항성 기작을 조절하여 나타난 결과로 추정된다.

cDNA Microarray Analysis of Phytophthora Resistance Related Genes Isolated from Pepper

  • Kim, Hyounjoung;Lee, Mi-Yeon;Kim, Ukjo;Lee, Sanghyeob;Park, Soon-Ho;Her, Nam-Han;Lee, Jing-Ha;Yang, Seung-Gyun;Harn, Chee-Hark
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.67.1-67
    • /
    • 2003
  • Phytophthora blight is a devastating disease of pepper and occurs almost anywhere peppers are grown. Phytophthora blight is caused by Phytophthora capsici and this pathogen can infect every part of the plant by moving inoculum in the soil, by infecting water on surface, by aerial dispersal to sporulating lesions. Management of Phytophthora blight currently relies on cultural practices, crop rotation, and use of selective fungicides. Since these treatments are a short-term management, a classical breeding for development of resistant pepper against the Phytophthora is an alternative. So far some of the resistant cultivars have been on the market, but those are limited regionally and commercially. Therefore, ultimately an elite line resistant against this disease should be developed, if possible, by biotechnology. We have set out a series of work recently in order to develop Phytophthora resistant pepper cultivar. For the first time, the cDNA microarray analysis was peformed using an EST chip that holds around 5000 pepper EST clones to identify genes responsive to Phytophthora infection. Total RNA samples were obtained from Capsicum annuum PI201234 after inoculating P. capsici to roots and soil and exposed to the chip. .Around 900 EST clones were up-regulated and down-regulated depending on the two RNA sample tissues, leaf and root. From those, we have found 55 transcription factors that may be involved in gene regulation of the disease defense mechanism. Further and in detail information will be provided in the poster.

  • PDF

Immunogenomics approaches to study host innate immunity against intestinal parasites

  • Lillehoj, Hyun S.
    • 한국가금학회:학술대회논문집
    • /
    • 한국가금학회 2006년도 제23차 정기총회 및 학술발표회
    • /
    • pp.7-16
    • /
    • 2006
  • Poultry products including meat and eggs constitute a major protein source in the American diet and disease - causing pathogens represent major challenges to the poultry industry. More than 95 % of pathogens enter the host through the mucosal surfaces of the respiratory, digestive and reproductive tracts and over the past few decades, the two main mechanisms used to control diseases have been the use of vaccines and antibiotics. However, in the poultry industry, there are mounting concerns over the ability of current vaccines to adequately protect against emerging hyper - virulent strains of pathogens and a lack of suitable, cost effective adjuvants. Thorough investigation of the immunogenetic responses involved in host-pathogen interactions will lead to the development of new and effective strategies for improving poultry health, food safety and the economic viability of the US poultry industry. In this paper, I describe the development of immunogenomic and proteomic tools to fundamentally determine and characterize the immunological mechanisms of the avian host to economically significant mucosal pathogens such as Eimeria. Recent completion of poultry genome sequencing and the development of several tissue-specific cDNA libraries in chickens are facilitating the rapid application of functional immunogenomics in the poultry disease research. Furthermore, research involving functional genomics, immunology and bioinformatics is providing novel insights into the processes of disease and immunity to microbial pathogens at mucosal surfaces. In this presentation, a new strategy of global gene expression using avian macrophage (AMM) to characterize the multiple pathways related to the variable immune responses of the host to Eimeria is described. This functional immunogenomics approach will increase current understanding of how mucosal immunity to infectious agents operates, and how it may be enhanced to enable the rational development of new and effective strategies against coccidiosis and other mucosal pathogens.

  • PDF

MoRBP9 Encoding a Ran-Binding Protein Microtubule-Organizing Center Is Required for Asexual Reproduction and Infection in the Rice Blast Pathogen Magnaporthe oryzae

  • Fu, Teng;Park, Gi-Chang;Han, Joon Hee;Shin, Jong-Hwan;Park, Hyun-Hoo;Kim, Kyoung Su
    • The Plant Pathology Journal
    • /
    • 제35권6호
    • /
    • pp.564-574
    • /
    • 2019
  • Like many fungal pathogens, the conidium and appressorium play key roles during polycyclic dissemination and infection of Magnaporthe oryzae. Ran-binding protein microtubule-organizing center (RanBPM) is a highly conserved nucleocytoplasmic protein. In animalia, RanBPM has been implicated in apoptosis, cell morphology, and transcription. However, the functional roles of RanBPM, encoded by MGG_00753 (named MoRBP9) in M. oryzae, have not been elucidated. Here, the deletion mutant ΔMorbp9 for MoRBP9 was generated via homologous recombination to investigate the functions of this gene. The ΔMorbp9 exhibited normal conidial germination and vegetative growth but dramatically reduced conidiation compared with the wild type, suggesting that MoRBP9 is involved in conidial production. ΔMorbp9 conidia failed to produce appressoria on hydrophobic surfaces, whereas ΔMorbp9 still developed aberrantly shaped appressorium-like structures at hyphal tips on the same surface, suggesting that MoRBP9 is involved in the morphology of appressorium-like structures from hyphal tips and is critical for development of appressorium from germ tubes. Taken together, our results indicated that MoRBP9 played a pleiotropic role in polycyclic dissemination and infection-related morphogenesis of M. oryzae.

수박계통간 염색체수준의 유전적변이 분석 (Genome-wide analysis of sequence variations in eight inbred watermelon lines)

  • 김윤성;고찬섭;양희범;강순철
    • Journal of Plant Biotechnology
    • /
    • 제43권2호
    • /
    • pp.164-173
    • /
    • 2016
  • 수박의 형태적 변이의 유전적 원인을 분석해 보기 위해 8개 계통에서 re-sequencing을 수행하였다. 유전적 변이의 수는 염색체에 따라 다르게 나왔으며 발견된 SNP의 약 12.9%만이 유전자내에서 발견되었고 나머지는 프로모터나 유전자 사이의 지역에서 발견되었다. SNP 밀도에 대한 분석 결과 염색체 6번의 말단지역에 변이가 집중되어 있는 것을 알 수 있었다. 또한 염색체 10과 11번에 잘 보존된 지역을 발견하였다. Pathway 분석을 통해 DIMBOA(일종의 항생제)-glucoside 분해 대사가 계통간 가장 차이나는 것으로 확인되었으며 이는 각 계통의 병저항성에서 차이가날 가능성을 시사하는 것이다. 당대사 관련 유전자 변이를 분석한 결과 alpha-galactosidase 유전자에 가장 변이가 많은 것으로 밝혀졌다. 이러한 연구 결과는 육종을 분자수준에서 이해하는 데 도움을 줄 것으로 생각한다.

Differential Gene Expression of Soybean[Glycine max(L.) Merr.] in Response to Xanthomonas axonopodis pv. glycines by Using Oligonulceotide Macroarray

  • Van, Kyujung;Lestari, Puji;Park, Yong-Jin;Gwag, Jae-Gyun;Kim, Moon-Young;Kim, Dong-Hyun;Heu, Sung-Gi;Lee, Suk-Ha
    • Journal of Crop Science and Biotechnology
    • /
    • 제10권3호
    • /
    • pp.147-158
    • /
    • 2007
  • Xanthomonas axonopodis pv. glycines(Xag) is a pathogen that causes bacterial leaf pustule(BLP) disease in soybeans grown in Korea and the southern United States. Typical and early symptoms of the disease are small, yellow to brown lesions with raised pustules that develop into large necrotic lesions leading to a substantial loss in yield due to premature defoliation. After Xag infects PI 96188, only pustules without chlorotic haloes were observed, indicating the different response to Xag. To identify differentially expressed genes prior to and 24 hr after Xag inoculation to PI 96188 and BLP-resistant SS2-2, an oligonucleotide macroarray was constructed with 100 genes related to disease resistance and metabolism from soybean and Arabidopsis. After cDNAs from each genotype were applied on the oligonucleotide macroarrays with three replicates and dye swapping, 36 and 81 genes were expressed as significantly different between 0 hr and 24 hr in PI 96188 and SS2-2, respectively. Six UniGenes, such as the leucine-rich repeat protein precursor or 14-3-3-like protein, were selected because they down-regulated in PI 96188 and up-regulated in SS2-2 after Xag infection, simultaneously. Using tubulin and cDNA of Jangyeobkong(BLP-susceptible) as controls, the oligonucleotide macroarray data concurred with quantitative real-time RT-PCR(QRT RT-PCR) results in most cases, supporting the accuracy of the oligonucleotide macroarray experiments. Also, QRT RT-PCR data suggested six candidate genes that might be involved in a necrotic response to Xag in PI 96188.

  • PDF