Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.07.2019.0204

MoRBP9 Encoding a Ran-Binding Protein Microtubule-Organizing Center Is Required for Asexual Reproduction and Infection in the Rice Blast Pathogen Magnaporthe oryzae  

Fu, Teng (Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University)
Park, Gi-Chang (Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University)
Han, Joon Hee (Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University)
Shin, Jong-Hwan (Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University)
Park, Hyun-Hoo (Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University)
Kim, Kyoung Su (Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University)
Publication Information
The Plant Pathology Journal / v.35, no.6, 2019 , pp. 564-574 More about this Journal
Abstract
Like many fungal pathogens, the conidium and appressorium play key roles during polycyclic dissemination and infection of Magnaporthe oryzae. Ran-binding protein microtubule-organizing center (RanBPM) is a highly conserved nucleocytoplasmic protein. In animalia, RanBPM has been implicated in apoptosis, cell morphology, and transcription. However, the functional roles of RanBPM, encoded by MGG_00753 (named MoRBP9) in M. oryzae, have not been elucidated. Here, the deletion mutant ΔMorbp9 for MoRBP9 was generated via homologous recombination to investigate the functions of this gene. The ΔMorbp9 exhibited normal conidial germination and vegetative growth but dramatically reduced conidiation compared with the wild type, suggesting that MoRBP9 is involved in conidial production. ΔMorbp9 conidia failed to produce appressoria on hydrophobic surfaces, whereas ΔMorbp9 still developed aberrantly shaped appressorium-like structures at hyphal tips on the same surface, suggesting that MoRBP9 is involved in the morphology of appressorium-like structures from hyphal tips and is critical for development of appressorium from germ tubes. Taken together, our results indicated that MoRBP9 played a pleiotropic role in polycyclic dissemination and infection-related morphogenesis of M. oryzae.
Keywords
Magnaporthe oryzae; pathogenicity; RanBPM;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Atabakhsh, E., Wang, J. H., Wang, X., Carter, D. E. and Schild-Poulter, C. 2012. RanBPM expression regulates transcriptional pathways involved in development and tumorigenesis. Am. J. Cancer Res. 2:549-565.
2 Rao, M. A., Cheng, H., Quayle, A. N., Nishitani, H., Nelson, C. C. and Rennie, P. S. 2002. RanBPM, a nuclear protein that interacts with and regulates transcriptional activity of androgen receptor and glucocorticoid receptor. J. Biol. Chem. 277:48020-48027.   DOI
3 Rex, E. B., Rankin, M. L., Yang, Y., Lu, Q., Gerfen, C. R., Jose, P. A. and Sibley, D. R. 2010. Identification of RanBP 9/10 as interacting partners for protein kinase C (PKC) $\gamma/\delta$ and the D1 dopamine receptor: regulation of PKC-mediated receptor phosphorylation. Mol. Pharmacol. 78:69-80.   DOI
4 Sakulkoo, W., Oses-Ruiz, M., Garcia, E. O., Soanes, D. M., Littlejohn, G. R., Hacker, C., Correia, A., Valent, B. and Talbot, N. J. 2018. A single fungal MAP kinase controls plant cell-tocell invasion by the rice blast fungus. Science 359:1399-1403.   DOI
5 Salemi, L. M., Maitland, M. E. R., McTavish, C. J. and Schild-Poulter, C. 2017. Cell signalling pathway regulation by RanBPM: molecular insights and disease implications. Open Biol. 7:170081.   DOI
6 Shi, Z. and Leung, H. 1995. Genetic analysis of sporulation in Magnaporthe grisea by chemical and insertional mutagenesis. Mol. Plant-Microbe Interact. 8:949-959.   DOI
7 Soanes, D. M., Kershaw, M. J., Cooley, R. N. and Talbot, N. J. 2002. Regulation of the MPG1 hydrophobin gene in the rice blast fungus Magnaporthe grisea. Mol. Plant-Microbe Interact. 15:1253-1267.   DOI
8 Stringer, M. A., Dean, R. A., Sewall, T. C. and Timberlake, W. E. 1991. Rodletless, a new Aspergillus developmental mutant induced by directed gene inactivation. Genes Dev. 5:1161-1171.   DOI
9 Talbot, N. J. 2003. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu. Rev. Microbiol. 57:177-202.   DOI
10 Bayry, J., Aimanianda, V., Guijarro, J. I., Sunde, M. and Latge, J.-P. 2012. Hydrophobins-unique fungal proteins. PLoS Pathog. 8:e1002700.   DOI
11 Denti, S., Sirri, A., Cheli, A., Rogge, L., Innamorati, G., Putignano, S., Fabbri, M., Pardi, R. and Bianchi, E. 2004. RanBPM is a phosphoprotein that associates with the plasma membrane and interacts with the integrin LFA-1. J. Biol. Chem. 279:13027-13034.   DOI
12 Brunkhorst, A., Karlen, M., Shi, J., Mikolajczyk, M., Nelson, M. A., Metsis, M. and Hermanson, O. 2005. A specific role for the TFIID subunit TAF4 and RanBPM in neural progenitor differentiation. Mol. Cell. Neurosci. 29:250-258.   DOI
13 Chi, M.-H., Park, S.-Y. and Lee, Y.-H. 2009. A quick and safe method for fungal DNA extraction. Plant Pathol. J. 25:108-111.   DOI
14 Das, S., Haq, S. and Ramakrishna, S. 2018. Scaffolding protein RanBPM and its interactions in diverse signaling pathways in health and disease. Discov. Med. 25:177-194.
15 Etienne-Manneville, S. 2004. Actin and microtubules in cell motility: which one is in control? Traffic 5:470-477.   DOI
16 Fu, T., Kim, J.-O., Han, J.-H., Gumilang, A., Lee, Y.-H. and Kim, K. S. 2018. A small GTPase RHO2 plays an important role in pre-infection development in the rice blast pathogen Magnaporthe oryzae. Plant Pathol. J. 34:470-479.   DOI
17 Han, J.-H., Lee, H.-M., Shin, J.-H., Lee, Y.-H. and Kim, K. S. 2015. Role of the MoYAK 1 protein kinase gene in Magnaporthe oryzae development and pathogenicity. Environ. Microbiol. 17:4672-4689.   DOI
18 Han, J.-H., Shin, J.-H., Lee, Y.-H. and Kim, K. S. 2018. Distinct roles of the YPEL gene family in development and pathogenicity in the ascomycete fungus Magnaporthe oryzae. Sci. Rep. 8:14461.   DOI
19 Thines, E., Weber, R. W. S. and Talbot, N. J. 2000. MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell 12:1703-1718.   DOI
20 Talbot, N. J., Ebbole, D. J. and Hamer, J. E. 1993. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5:1575-1590.   DOI
21 Tomastikova, E., Cenklova, V., Kohoutova, L., Petrovska, B., Vachova, L., Halada, P., Kocarova, G. and Binarova, P. 2012. Interactions of an Arabidopsis RanBPM homologue with LisH-CTLH domain proteins revealed high conservation of CTLH complexes in eukaryotes. BMC Plant Biol. 12:83.   DOI
22 Wang, D., Li, Z., Schoen, S. R., Messing, E. M. and Wu, G. 2004. A novel MET-interacting protein shares high sequence similarity with RanBPM, but fails to stimulate MET-induced Ras/Erk signaling. Biochem. Biophys. Res. Commun. 313:320-326.   DOI
23 Wosten, H. A. B., Asgeirsdottir, S. A., Krook, J. H., Drenth, J. H. and Wessels, J. G. 1994. The fungal hydrophobin Sc3p selfassembles at the surface of aerial hyphae as a protein membrane constituting the hydrophobic rodlet layer. Eur. J. Cell Biol. 63:122-129.
24 Wosten, H. A. B. and Willey, J. M. 2000. Surface-active proteins enable microbial aerial hyphae to grow into the air. Microbiology 146:767-773.   DOI
25 Yang, J., Zhao, X., Sun, J., Kang, Z., Ding, S., Xu, J.-R. and Peng, Y.-L. 2010. A novel protein Com1 is required for normal conidium morphology and full virulence in Magnaporthe oryzae. Mol. Plant-Microbe Interact. 23:112-123.   DOI
26 Yi, M., Park, J.-H., Ahn, J.-H. and Lee, Y.-H. 2008. MoSNF1 regulates sporulation and pathogenicity in the rice blast fungus Magnaporthe oryzae. Fungal Genet. Biol. 45:1172-1181.   DOI
27 Kim, S., Ahn, I.-P., Rho, H.-S. and Lee, Y.-H. 2005. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Mol. Microbiol. 57:1224-1237.   DOI
28 He, Y., Deng, Y. Z. and Naqvi, N. I. 2013. Atg24-assisted mitophagy in the foot cells is necessary for proper asexual differentiation in Magnaporthe oryzae. Autophagy 9:1818-1827.   DOI
29 Jiang, C., Zhang, X., Liu, H. and Xu, J.-R. 2018. Mitogenactivated protein kinase signaling in plant pathogenic fungi. PLoS Pathog. 14:e1006875.   DOI
30 Kim, K. S. and Lee, Y.-H. 2012. Gene expression profiling during conidiation in the rice blast pathogen Magnaporthe oryzae. PLoS ONE 7:e43202.   DOI
31 Kim, S., Park, S.-Y., Kim, K. S., Rho, H.-S., Chi, M.-H., Choi, J., Park, J., Kong, S., Park, J., Goh, J. and Lee, Y.-H. 2009. Homeobox transcription factors are required for conidiation and appressorium development in the rice blast fungus Magnaporthe oryzae. PLoS Genet. 5:e1000757.   DOI
32 Kobayashi, N., Yang, J., Ueda, A., Suzuki, T., Tomaru, K., Takeno, M., Okuda, K. and Ishigatsubo, Y. 2007. RanBPM, Muskelin, p48EMLP, p44CTLH, and the armadillo-repeat proteins $ARMC8{\alpha}$ and $ARMC8{\beta}$ are components of the CTLH complex. Gene 396:236-247.   DOI
33 Kong, L.-A., Li, G.-T., Liu, Y., Liu, M.-G., Zhang, S.-J., Yang, J., Zhou, X.-Y., Peng, Y.-L. and Xu, J.-R. 2013. Differences between appressoria formed by germ tubes and appressoriumlike structures developed by hyphal tips in Magnaporthe oryzae. Fungal Genet. Biol. 56:33-41.   DOI
34 Liu, T., Roh, S. E., Woo, J. A., Ryu, H. and Kang, D. E. 2013. Cooperative role of RanBP9 and P73 in mitochondria-mediated apoptosis. Cell Death Dis. 4:e476.   DOI
35 Leung, H., Lehtinen, U., Karjalainen, R., Skinner, D., Tooley, P., Leong, S. and Ellingboe, A. 1990. Transformation of the rice blast fungus Magnaporthe grisea to hygromycin B resistance. Curr. Genet. 17:409-411.   DOI
36 Zheng, W., Zhao, Z., Chen, J., Liu, W., Ke, H., Zhou, J., Lu, G., Darvill, A. G., Albersheim, P., Wu, S. and Wang, Z. 2009. A Cdc42 ortholog is required for penetration and virulence of Magnaporthe grisea. Fungal Genet. Biol. 46:450-460.   DOI
37 Zhou, Z., Li, G., Lin, C. and He, C. 2009. Conidiophore stalkless1 encodes a putative zinc-finger protein involved in the early stage of conidiation and mycelial infection in Magnaporthe oryzae. Mol. Plant-Microbe Interact. 22:402-410.   DOI
38 Li, G., Zhou, X. and Xu, J.-R. 2012. Genetic control of infectionrelated development in Magnaporthe oryzae. Curr. Opin. Microbiol. 15:678-684.   DOI
39 Li, Y., Que, Y., Liu, Y., Yue, X., Meng, X., Zhang, Z. and Wang, Z. 2015. The putative $G{\gamma}$ subunit gene MGG1 is required for conidiation, appressorium formation, mating and pathogenicity in Magnaporthe oryzae. Curr. Genet. 61:641-651.   DOI
40 Li, Y., Zhang, X., Hu, S., Liu, H. and Xu, J.-R. 2017. PKA activity is essential for relieving the suppression of hyphal growth and appressorium formation by MoSfl1 in Magnaporthe oryzae. PLoS Genet. 13:e1006954.   DOI
41 Liu, W., Xie, S., Zhao, X., Chen, X., Zheng, W., Lu, G., Xu, J.-R. and Wang, Z. 2010. A homeobox Gene is essential for conidiogenesis of the rice blast fungus Magnaporthe oryzae. Mol. Plant-Microbe Interact. 23:366-375.   DOI
42 Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}C}{_T}$ method. Methods 25:402-408.   DOI
43 Lu, J.-P., Feng, X.-X., Liu, X.-H., Lu, Q., Wang, H.-K. and Lin, F.-C. 2007. Mnh6, a nonhistone protein, is required for fungal development and pathogenicity of Magnaporthe grisea. Fungal Genet. Biol. 44:819-829.   DOI
44 Perfetto, L., Gherardini, P. F., Davey, N. E., Diella, F., Helmer-Citterich, M. and Cesareni, G. 2013. Exploring the diversity of SPRY/B30.2-mediated interactions. Trends Biochem. Sci. 38:38-46.   DOI
45 Matheis, S., Yemelin, A., Scheps, D., Andresen, K., Jacob, S., Thines, E. and Foster, A. J. 2017. Functions of the Magnaporthe oryzae Flb3p and Flb4p transcription factors in the regulation of conidiation. Microbiol. Res. 196:106-117.   DOI
46 Mikolajczyk, M., Shi, J., Vaillancourt, R. R., Sachs, N. A. and Nelson, M. 2003. The cyclin-dependent kinase $11^{p46}$ isoform interacts with RanBPM. Biochem. Biophys. Res. Commun. 310:14-18.   DOI
47 Nakamura, M., Masuda, H., Horii, J., Kuma, K.-I., Yokoyama, N., Ohba, T., Nishitani, H., Miyata, T., Tanaka, M. and Nishimoto, T. 1998. When overexpressed, a novel centrosomal protein, RanBPM, causes ectopic microtubule nucleation similar to $\gamma$-tubulin. J. Cell Biol. 143:1041-1052.   DOI
48 Nishitani, H., Hirose, E., Uchimura, Y., Nakamura, M., Umeda, M., Nishii, K., Mori, N. and Nishimoto, T. 2001. Full-sized RanBPM cDNA encodes a protein possessing a long stretch of proline and glutamine within the N-terminal region, comprising a large protein complex. Gene 272:25-33.   DOI
49 Odenbach, D., Breth, B., Thines, E., Weber, R. W. S., Anke, H. and Foster, A. J. 2007. The transcription factor Con7p is a central regulator of infection-related morphogenesis in the rice blast fungus Magnaporthe grisea. Mol. Microbiol. 64:293-307.   DOI
50 Park, J., Kong, S., Kim, S., Kang, S. and Lee, Y.-H. 2014. Roles of forkhead-box transcription factors in controlling development, pathogenicity, and stress response in Magnaporthe oryzae. Plant Pathol. J. 30:136-150.   DOI
51 Qi, Z., Wang, Q., Dou, X., Wang, W., Zhao, Q., Lv, R., Zhang, H., Zheng, X., Wang, P. and Zhang, Z. 2012. MoSwi6, an APSES family transcription factor, interacts with MoMps1 and is required for hyphal and conidial morphogenesis, appressorial function and pathogenicity of Magnaporthe oryzae. Mol. Plant Pathol. 13:677-689.   DOI