DOI QR코드

DOI QR Code

MoRBP9 Encoding a Ran-Binding Protein Microtubule-Organizing Center Is Required for Asexual Reproduction and Infection in the Rice Blast Pathogen Magnaporthe oryzae

  • Fu, Teng (Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University) ;
  • Park, Gi-Chang (Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University) ;
  • Han, Joon Hee (Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University) ;
  • Shin, Jong-Hwan (Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University) ;
  • Park, Hyun-Hoo (Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University) ;
  • Kim, Kyoung Su (Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University)
  • Received : 2019.07.24
  • Accepted : 2019.09.18
  • Published : 2019.12.01

Abstract

Like many fungal pathogens, the conidium and appressorium play key roles during polycyclic dissemination and infection of Magnaporthe oryzae. Ran-binding protein microtubule-organizing center (RanBPM) is a highly conserved nucleocytoplasmic protein. In animalia, RanBPM has been implicated in apoptosis, cell morphology, and transcription. However, the functional roles of RanBPM, encoded by MGG_00753 (named MoRBP9) in M. oryzae, have not been elucidated. Here, the deletion mutant ΔMorbp9 for MoRBP9 was generated via homologous recombination to investigate the functions of this gene. The ΔMorbp9 exhibited normal conidial germination and vegetative growth but dramatically reduced conidiation compared with the wild type, suggesting that MoRBP9 is involved in conidial production. ΔMorbp9 conidia failed to produce appressoria on hydrophobic surfaces, whereas ΔMorbp9 still developed aberrantly shaped appressorium-like structures at hyphal tips on the same surface, suggesting that MoRBP9 is involved in the morphology of appressorium-like structures from hyphal tips and is critical for development of appressorium from germ tubes. Taken together, our results indicated that MoRBP9 played a pleiotropic role in polycyclic dissemination and infection-related morphogenesis of M. oryzae.

Keywords

References

  1. Atabakhsh, E., Wang, J. H., Wang, X., Carter, D. E. and Schild-Poulter, C. 2012. RanBPM expression regulates transcriptional pathways involved in development and tumorigenesis. Am. J. Cancer Res. 2:549-565.
  2. Bayry, J., Aimanianda, V., Guijarro, J. I., Sunde, M. and Latge, J.-P. 2012. Hydrophobins-unique fungal proteins. PLoS Pathog. 8:e1002700. https://doi.org/10.1371/journal.ppat.1002700
  3. Brunkhorst, A., Karlen, M., Shi, J., Mikolajczyk, M., Nelson, M. A., Metsis, M. and Hermanson, O. 2005. A specific role for the TFIID subunit TAF4 and RanBPM in neural progenitor differentiation. Mol. Cell. Neurosci. 29:250-258. https://doi.org/10.1016/j.mcn.2005.02.015
  4. Chi, M.-H., Park, S.-Y. and Lee, Y.-H. 2009. A quick and safe method for fungal DNA extraction. Plant Pathol. J. 25:108-111. https://doi.org/10.5423/PPJ.2009.25.1.108
  5. Das, S., Haq, S. and Ramakrishna, S. 2018. Scaffolding protein RanBPM and its interactions in diverse signaling pathways in health and disease. Discov. Med. 25:177-194.
  6. Denti, S., Sirri, A., Cheli, A., Rogge, L., Innamorati, G., Putignano, S., Fabbri, M., Pardi, R. and Bianchi, E. 2004. RanBPM is a phosphoprotein that associates with the plasma membrane and interacts with the integrin LFA-1. J. Biol. Chem. 279:13027-13034. https://doi.org/10.1074/jbc.M313515200
  7. Etienne-Manneville, S. 2004. Actin and microtubules in cell motility: which one is in control? Traffic 5:470-477. https://doi.org/10.1111/j.1600-0854.2004.00196.x
  8. Fu, T., Kim, J.-O., Han, J.-H., Gumilang, A., Lee, Y.-H. and Kim, K. S. 2018. A small GTPase RHO2 plays an important role in pre-infection development in the rice blast pathogen Magnaporthe oryzae. Plant Pathol. J. 34:470-479. https://doi.org/10.5423/PPJ.OA.04.2018.0069
  9. Han, J.-H., Lee, H.-M., Shin, J.-H., Lee, Y.-H. and Kim, K. S. 2015. Role of the MoYAK 1 protein kinase gene in Magnaporthe oryzae development and pathogenicity. Environ. Microbiol. 17:4672-4689. https://doi.org/10.1111/1462-2920.13010
  10. Han, J.-H., Shin, J.-H., Lee, Y.-H. and Kim, K. S. 2018. Distinct roles of the YPEL gene family in development and pathogenicity in the ascomycete fungus Magnaporthe oryzae. Sci. Rep. 8:14461. https://doi.org/10.1038/s41598-018-32633-6
  11. He, Y., Deng, Y. Z. and Naqvi, N. I. 2013. Atg24-assisted mitophagy in the foot cells is necessary for proper asexual differentiation in Magnaporthe oryzae. Autophagy 9:1818-1827. https://doi.org/10.4161/auto.26057
  12. Jiang, C., Zhang, X., Liu, H. and Xu, J.-R. 2018. Mitogenactivated protein kinase signaling in plant pathogenic fungi. PLoS Pathog. 14:e1006875. https://doi.org/10.1371/journal.ppat.1006875
  13. Kim, K. S. and Lee, Y.-H. 2012. Gene expression profiling during conidiation in the rice blast pathogen Magnaporthe oryzae. PLoS ONE 7:e43202. https://doi.org/10.1371/journal.pone.0043202
  14. Kim, S., Ahn, I.-P., Rho, H.-S. and Lee, Y.-H. 2005. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Mol. Microbiol. 57:1224-1237. https://doi.org/10.1111/j.1365-2958.2005.04750.x
  15. Kim, S., Park, S.-Y., Kim, K. S., Rho, H.-S., Chi, M.-H., Choi, J., Park, J., Kong, S., Park, J., Goh, J. and Lee, Y.-H. 2009. Homeobox transcription factors are required for conidiation and appressorium development in the rice blast fungus Magnaporthe oryzae. PLoS Genet. 5:e1000757. https://doi.org/10.1371/journal.pgen.1000757
  16. Kobayashi, N., Yang, J., Ueda, A., Suzuki, T., Tomaru, K., Takeno, M., Okuda, K. and Ishigatsubo, Y. 2007. RanBPM, Muskelin, p48EMLP, p44CTLH, and the armadillo-repeat proteins $ARMC8{\alpha}$ and $ARMC8{\beta}$ are components of the CTLH complex. Gene 396:236-247. https://doi.org/10.1016/j.gene.2007.02.032
  17. Kong, L.-A., Li, G.-T., Liu, Y., Liu, M.-G., Zhang, S.-J., Yang, J., Zhou, X.-Y., Peng, Y.-L. and Xu, J.-R. 2013. Differences between appressoria formed by germ tubes and appressoriumlike structures developed by hyphal tips in Magnaporthe oryzae. Fungal Genet. Biol. 56:33-41. https://doi.org/10.1016/j.fgb.2013.03.006
  18. Leung, H., Lehtinen, U., Karjalainen, R., Skinner, D., Tooley, P., Leong, S. and Ellingboe, A. 1990. Transformation of the rice blast fungus Magnaporthe grisea to hygromycin B resistance. Curr. Genet. 17:409-411. https://doi.org/10.1007/BF00334519
  19. Li, G., Zhou, X. and Xu, J.-R. 2012. Genetic control of infectionrelated development in Magnaporthe oryzae. Curr. Opin. Microbiol. 15:678-684. https://doi.org/10.1016/j.mib.2012.09.004
  20. Li, Y., Que, Y., Liu, Y., Yue, X., Meng, X., Zhang, Z. and Wang, Z. 2015. The putative $G{\gamma}$ subunit gene MGG1 is required for conidiation, appressorium formation, mating and pathogenicity in Magnaporthe oryzae. Curr. Genet. 61:641-651. https://doi.org/10.1007/s00294-015-0490-1
  21. Li, Y., Zhang, X., Hu, S., Liu, H. and Xu, J.-R. 2017. PKA activity is essential for relieving the suppression of hyphal growth and appressorium formation by MoSfl1 in Magnaporthe oryzae. PLoS Genet. 13:e1006954. https://doi.org/10.1371/journal.pgen.1006954
  22. Liu, T., Roh, S. E., Woo, J. A., Ryu, H. and Kang, D. E. 2013. Cooperative role of RanBP9 and P73 in mitochondria-mediated apoptosis. Cell Death Dis. 4:e476. https://doi.org/10.1038/cddis.2012.203
  23. Liu, W., Xie, S., Zhao, X., Chen, X., Zheng, W., Lu, G., Xu, J.-R. and Wang, Z. 2010. A homeobox Gene is essential for conidiogenesis of the rice blast fungus Magnaporthe oryzae. Mol. Plant-Microbe Interact. 23:366-375. https://doi.org/10.1094/MPMI-23-4-0366
  24. Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}C}{_T}$ method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  25. Lu, J.-P., Feng, X.-X., Liu, X.-H., Lu, Q., Wang, H.-K. and Lin, F.-C. 2007. Mnh6, a nonhistone protein, is required for fungal development and pathogenicity of Magnaporthe grisea. Fungal Genet. Biol. 44:819-829. https://doi.org/10.1016/j.fgb.2007.06.003
  26. Matheis, S., Yemelin, A., Scheps, D., Andresen, K., Jacob, S., Thines, E. and Foster, A. J. 2017. Functions of the Magnaporthe oryzae Flb3p and Flb4p transcription factors in the regulation of conidiation. Microbiol. Res. 196:106-117. https://doi.org/10.1016/j.micres.2016.12.010
  27. Mikolajczyk, M., Shi, J., Vaillancourt, R. R., Sachs, N. A. and Nelson, M. 2003. The cyclin-dependent kinase $11^{p46}$ isoform interacts with RanBPM. Biochem. Biophys. Res. Commun. 310:14-18. https://doi.org/10.1016/j.bbrc.2003.08.116
  28. Nakamura, M., Masuda, H., Horii, J., Kuma, K.-I., Yokoyama, N., Ohba, T., Nishitani, H., Miyata, T., Tanaka, M. and Nishimoto, T. 1998. When overexpressed, a novel centrosomal protein, RanBPM, causes ectopic microtubule nucleation similar to $\gamma$-tubulin. J. Cell Biol. 143:1041-1052. https://doi.org/10.1083/jcb.143.4.1041
  29. Nishitani, H., Hirose, E., Uchimura, Y., Nakamura, M., Umeda, M., Nishii, K., Mori, N. and Nishimoto, T. 2001. Full-sized RanBPM cDNA encodes a protein possessing a long stretch of proline and glutamine within the N-terminal region, comprising a large protein complex. Gene 272:25-33. https://doi.org/10.1016/S0378-1119(01)00553-4
  30. Odenbach, D., Breth, B., Thines, E., Weber, R. W. S., Anke, H. and Foster, A. J. 2007. The transcription factor Con7p is a central regulator of infection-related morphogenesis in the rice blast fungus Magnaporthe grisea. Mol. Microbiol. 64:293-307. https://doi.org/10.1111/j.1365-2958.2007.05643.x
  31. Park, J., Kong, S., Kim, S., Kang, S. and Lee, Y.-H. 2014. Roles of forkhead-box transcription factors in controlling development, pathogenicity, and stress response in Magnaporthe oryzae. Plant Pathol. J. 30:136-150. https://doi.org/10.5423/PPJ.OA.02.2014.0018
  32. Perfetto, L., Gherardini, P. F., Davey, N. E., Diella, F., Helmer-Citterich, M. and Cesareni, G. 2013. Exploring the diversity of SPRY/B30.2-mediated interactions. Trends Biochem. Sci. 38:38-46. https://doi.org/10.1016/j.tibs.2012.10.001
  33. Qi, Z., Wang, Q., Dou, X., Wang, W., Zhao, Q., Lv, R., Zhang, H., Zheng, X., Wang, P. and Zhang, Z. 2012. MoSwi6, an APSES family transcription factor, interacts with MoMps1 and is required for hyphal and conidial morphogenesis, appressorial function and pathogenicity of Magnaporthe oryzae. Mol. Plant Pathol. 13:677-689. https://doi.org/10.1111/j.1364-3703.2011.00779.x
  34. Rao, M. A., Cheng, H., Quayle, A. N., Nishitani, H., Nelson, C. C. and Rennie, P. S. 2002. RanBPM, a nuclear protein that interacts with and regulates transcriptional activity of androgen receptor and glucocorticoid receptor. J. Biol. Chem. 277:48020-48027. https://doi.org/10.1074/jbc.M209741200
  35. Rex, E. B., Rankin, M. L., Yang, Y., Lu, Q., Gerfen, C. R., Jose, P. A. and Sibley, D. R. 2010. Identification of RanBP 9/10 as interacting partners for protein kinase C (PKC) $\gamma/\delta$ and the D1 dopamine receptor: regulation of PKC-mediated receptor phosphorylation. Mol. Pharmacol. 78:69-80. https://doi.org/10.1124/mol.110.063727
  36. Sakulkoo, W., Oses-Ruiz, M., Garcia, E. O., Soanes, D. M., Littlejohn, G. R., Hacker, C., Correia, A., Valent, B. and Talbot, N. J. 2018. A single fungal MAP kinase controls plant cell-tocell invasion by the rice blast fungus. Science 359:1399-1403. https://doi.org/10.1126/science.aaq0892
  37. Salemi, L. M., Maitland, M. E. R., McTavish, C. J. and Schild-Poulter, C. 2017. Cell signalling pathway regulation by RanBPM: molecular insights and disease implications. Open Biol. 7:170081. https://doi.org/10.1098/rsob.170081
  38. Shi, Z. and Leung, H. 1995. Genetic analysis of sporulation in Magnaporthe grisea by chemical and insertional mutagenesis. Mol. Plant-Microbe Interact. 8:949-959. https://doi.org/10.1094/MPMI-8-0949
  39. Soanes, D. M., Kershaw, M. J., Cooley, R. N. and Talbot, N. J. 2002. Regulation of the MPG1 hydrophobin gene in the rice blast fungus Magnaporthe grisea. Mol. Plant-Microbe Interact. 15:1253-1267. https://doi.org/10.1094/MPMI.2002.15.12.1253
  40. Stringer, M. A., Dean, R. A., Sewall, T. C. and Timberlake, W. E. 1991. Rodletless, a new Aspergillus developmental mutant induced by directed gene inactivation. Genes Dev. 5:1161-1171. https://doi.org/10.1101/gad.5.7.1161
  41. Talbot, N. J. 2003. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu. Rev. Microbiol. 57:177-202. https://doi.org/10.1146/annurev.micro.57.030502.090957
  42. Talbot, N. J., Ebbole, D. J. and Hamer, J. E. 1993. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5:1575-1590. https://doi.org/10.1105/tpc.5.11.1575
  43. Thines, E., Weber, R. W. S. and Talbot, N. J. 2000. MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell 12:1703-1718. https://doi.org/10.2307/3871184
  44. Tomastikova, E., Cenklova, V., Kohoutova, L., Petrovska, B., Vachova, L., Halada, P., Kocarova, G. and Binarova, P. 2012. Interactions of an Arabidopsis RanBPM homologue with LisH-CTLH domain proteins revealed high conservation of CTLH complexes in eukaryotes. BMC Plant Biol. 12:83. https://doi.org/10.1186/1471-2229-12-83
  45. Wang, D., Li, Z., Schoen, S. R., Messing, E. M. and Wu, G. 2004. A novel MET-interacting protein shares high sequence similarity with RanBPM, but fails to stimulate MET-induced Ras/Erk signaling. Biochem. Biophys. Res. Commun. 313:320-326. https://doi.org/10.1016/j.bbrc.2003.11.124
  46. Wosten, H. A. B., Asgeirsdottir, S. A., Krook, J. H., Drenth, J. H. and Wessels, J. G. 1994. The fungal hydrophobin Sc3p selfassembles at the surface of aerial hyphae as a protein membrane constituting the hydrophobic rodlet layer. Eur. J. Cell Biol. 63:122-129.
  47. Wosten, H. A. B. and Willey, J. M. 2000. Surface-active proteins enable microbial aerial hyphae to grow into the air. Microbiology 146:767-773. https://doi.org/10.1099/00221287-146-4-767
  48. Yang, J., Zhao, X., Sun, J., Kang, Z., Ding, S., Xu, J.-R. and Peng, Y.-L. 2010. A novel protein Com1 is required for normal conidium morphology and full virulence in Magnaporthe oryzae. Mol. Plant-Microbe Interact. 23:112-123. https://doi.org/10.1094/MPMI-23-1-0112
  49. Yi, M., Park, J.-H., Ahn, J.-H. and Lee, Y.-H. 2008. MoSNF1 regulates sporulation and pathogenicity in the rice blast fungus Magnaporthe oryzae. Fungal Genet. Biol. 45:1172-1181. https://doi.org/10.1016/j.fgb.2008.05.003
  50. Zheng, W., Zhao, Z., Chen, J., Liu, W., Ke, H., Zhou, J., Lu, G., Darvill, A. G., Albersheim, P., Wu, S. and Wang, Z. 2009. A Cdc42 ortholog is required for penetration and virulence of Magnaporthe grisea. Fungal Genet. Biol. 46:450-460. https://doi.org/10.1016/j.fgb.2009.03.005
  51. Zhou, Z., Li, G., Lin, C. and He, C. 2009. Conidiophore stalkless1 encodes a putative zinc-finger protein involved in the early stage of conidiation and mycelial infection in Magnaporthe oryzae. Mol. Plant-Microbe Interact. 22:402-410. https://doi.org/10.1094/MPMI-22-4-0402