• Title/Summary/Keyword: Path error

Search Result 904, Processing Time 0.031 seconds

Implementation of Active Noise Control with DSP56001 (DSP56001을 이용한 능동소음제어의 구현)

  • Kim, Young-Hoon;Park, Jang-Kwan;Koo, Choon-Keun;Chung, Chan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.654-656
    • /
    • 1998
  • This paper deal with the implementation of Active Noise Control (ANC) in a short duct. In case of ANC in the air duct, input microphone, control speaker, error microphone are used. But we can't use input microphone because of the characteristics of short duct. It is difficult to avoid howl. So we propose single-channel adaptive feedback ANC which is composed only error microphone and control speaker without input microphone. FXLMS algorithm is used to compensate for the time delay of the error path. Experimental results show that the controller reduce noise signal sufficiently.

  • PDF

Convergence of the Filtered-x Least Mean Fourth Algorithm for Active Noise Control (능동 소음 제어를 위한 Filtered-x 최소 평균 네제곱 알고리듬의 수렴분석)

  • 이강승
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.8
    • /
    • pp.616-625
    • /
    • 2002
  • In this paper, we drove the filtered-x least mean fourth (FXLMF) algorithm where the error raised to the power of four is minimized and analyzed its convergence behavior for a multiple sinusoidal acoustic noise and Gaussian measurement noise. The application of the FXLMF adaptive filter to active noise control requires to estimate the transfer characteristics of the acoustic path between the output and the error signal of the adaptive controller. The results of the convergence analysis of the FXLMF algorithm indicate that the effects of the parameter estimation inaccuracy on the convergence behavior of the algorithm are characterized by two distinct components phase estimation error and estimated gain. In particular, the convergence is shown to be strongly affected by the accuracy of the phase response estimate. Also, we newly show that the convergence behavior can differ depending on the relative sizes of the Gaussian noise and the convergence constant.

Performance of LOB-based Emitter Localization Using Linear LSE Algorithms (선형 LSE 알고리즘을 이용한 신호원 위치 추정 성능)

  • Lee, Joon-Ho;Kim, Min-Cheol;Cho, Seong-Woo;Kim, Sang-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.36-40
    • /
    • 2010
  • In this paper, the well-known LOB-based emitter localization using linear LSE algorithm is numerically implemented and the heuristic guidelines for the parameter values to achieve 1% RMS error are presented. In the simulation, we changed the total observation durations for LOB measurements, time interval between successive LOB measurements and sensor trajectories. The effects of the time interval of LOB measurements, the time duration of the LOB measurements and the angle of flight path arc on the performance are illustrated. The dependence of the performance on the various parameters is investigated and rule-of-thumbs for the parameter values corresponding to 1% RMS error are presented for each simulation condition.

Performance of UWB Ranging in Multipath and Multiuser Environments (다중경로 다중사용자 환경에서의 초광대역 거리추정의 성능 분석)

  • Lee Joon-Yong;Yoo Sungyul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1125-1132
    • /
    • 2005
  • Ultra-wideband (UWB) ranging poses a set of time delay estimation problems for designers. The possibility of a large error can be a challenging problem for accurate ranging and positioning. An approximate analysis of large error performance of UWB ranging in multipath and multiuser environments is posed. Both analytical and experimental approaches are taken to evaluate the large error variance in a correlation-based serial search scenario.

A Study on reducing errors in scanning object using a laser s (레이저 스케너를 이용한 측정시 오차감소에 관한 연구)

  • 홍성균;이희관;공영식;양균의
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.393-398
    • /
    • 2002
  • This study proposes a method to reduce error scanning data of laser scanner. The method co of 3 stages. First, there is an error indu difference of the distance between the prob the object. It is possible to reduce the e planning a scanning strategy: object settin path. Second, the scan data loss of the tooli affects calculating the tooling ball con z-direction compensation is given to calculat accurate registration points. Third, three p used to determine a transformation matrix on frame. As merging, the maximum error usually on the third tooling ball in the conven method, which select a point among three po randomly. We find the centroid of 3 points apply it to determine a new transformation mat

  • PDF

The Filtered-x Least Mean Fourth Algorithm for Active Noise Control and Its Convergence Analysis (능동 소음 제어를 위한 Filtered-x 최소평균사승 알고리듬 및 수렴 특성에 관한 연구)

  • 이강승;이재천;윤대희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.11
    • /
    • pp.1506-1516
    • /
    • 1995
  • In this paper, we propose the filtered-x least mean fourth (FXLMF) algorithm where the error raised to the power of four is minimized and analyze its convergence behavior for a multiple sinusoidal acoustic noise and Gaussian measurement noise. Application of the FXLMF adaptive filter to active noise control requires to estimate the transfer characteristics of the acoustic path between the output and the error signal of the adaptive controller. The results of the convergence analysis of the FXLMF algorithm indicate that the effects of the parameter estimation inaccuracy on the convergence behavior of the algorithm are characterized by two distinct components : Phase estimation error and estimated gain. In particular, the convergence is shown to be strongly affected by the accuracy of the phase response estimate. Also, we newly show that the convergence behavior can differ depending on the relative sizes of the Gaussian noise and the convergence constant.

  • PDF

Convergence Analysis of a Filtered-x Least Mean Fourth Active Noise Controller (Filtered-x 최소평균사승 능동 소음 제어기 수렴분석)

  • 이강승
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06d
    • /
    • pp.80-83
    • /
    • 1998
  • In this paper, we propose a new filtered-x least mean fouth (LMF) algorithm where the error raised to the power of four is minimized and analyze its convergence behavior or a multiple sinusoidal acoustic noise and Gaussian measurement noise. Application of the filtered-x LMF adaptive filter to active noise cancellation (ANC) requires estimating of the transfer characteristic of the acoustic path between the ouput and error signal of the adaptive canceller. The results of the convergence analysis of the filtered-x LMF algorithm indicates that the effects of the parameter estimation inaccuracy on the convergence behavior of the algorithm are characterized by two distinct component . Phase estimation error and estimated again. In particular , the convergence is shown to be strongly affected by the accuracy of the phase response estimate. Also, we newly show that convergence behavior can differ depending on the relative sizes of the Gaussian measurement noise and convergence constant.

  • PDF

NURBS Interpolation Algorithm for CNC Machining with High Speed and High Precision (고속ㆍ고정도 CNC가공을 위한 NURBS 보간 알고리즘)

  • 김민중;송진일;권동수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.192-197
    • /
    • 2000
  • In CNC machining, a free curve is cut into small linear segments using the linear interpolation(G01) method. Therefore, the interpolation error along the curve is not constant due to the changing curvature. This paper presents a NURBS (Non-Uniform Rational B-Spline) interpolation algorithm for machining free curves with high precision and high speed. The proposed NURBS interpolation defines the tool path with NURBS parameters and limits the interpolation error to any desired level by adjusting the feed rate considering the curvature of the shape and sampling time. Both linear and NURBS interpolations are compared to show the validity of the proposed algorithm.

  • PDF

A Study on the Controller Design of Unmanned Surface Vessel through Repetitive Learning Method (반복 학습을 통한 무인 선박의 제어기 설계에 관한 연구)

  • Kim, Mincheul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.850-856
    • /
    • 2018
  • In this paper, a controller based on repetitive learning control is designed to control an unmanned surface vessel with nonlinear characteristics and unknown parameters. First, we define the equations of motion and error system of the unmanned vessel, and then design an repetitive learning controller composed of system error and estimated unknown parameters based on repetitive learning control and adaptive control. The stability of the unmanned vessel model controlled by the designed controller is verified through the analysis of the Lyapunov stability. Simulation shows that the error converges asymptotically to zero with semi-global result, confirming that the unmanned vessel is moving toward a given ideal path, and verifies that the controller is also feasible.

Exact Error Rate of Dual-Channel Receiver with Remote Antenna Unit Selection in Multicell Networks

  • Wang, Qing;Liu, Ju;Zheng, Lina;Xiong, Hailiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3585-3601
    • /
    • 2016
  • The error rate performance of circularly distributed antenna system is studied over Nakagami-m fading channels, where a dual-channel receiver is employed for the quadrature phase shift keying signals detection. To mitigate the Co-Channel Interference (CCI) caused by the adjacent cells and to save the transmit power, this work presents remote antenna unit selection transmission based on the best channel quality and the maximized path-loss, respectively. The commonly used Gaussian and Q-function approximation method in which the CCI and the noise are assumed to be Gaussian distributed fails to depict the precise system performance according to the central limit theory. To this end, this work treats the CCI as a random variable with random variance. Since the in-phase and the quadrature components of the CCI are correlated over Nakagami-m fading channels, the dependency between the in-phase and the quadrature components is also considered for the error rate analysis. For the special case of Rayleigh fading in which the dependency between the in-phase and the quadrature components can be ignored, the closed-form error rate expressions are derived. Numerical results validate the accuracy of the theoretical analysis, and a comparison among different transmission schemes is also performed.