• Title/Summary/Keyword: Patch array antenna

Search Result 241, Processing Time 0.03 seconds

Design of $2{\times}1$ Array Antenna Using Stack Structure for IEEE 802.11a (적층구조를 이용한 IEEE 802.11a용 $2{\times}1$ 배열 안테나 설계)

  • Park, Jung-Ah;Bu, Chong-Bae;Kim, Kab-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.849-852
    • /
    • 2007
  • In this paper, the high gain and the broadband microstrip patch antenna, which is applicable to 5 GHz band wireless LAN, is designed in order to integrate IEEE 802.11a's detailed standards($a:5.15{\sim}5.25$, $b:5.25{\sim}5.35$, $c:5.725{\sim}5.875$ [GHz]). Designed patch antenna has settled resonance frequency by insert substance(polyurethane: ${\varepsilon}_r=6.5$) between the separated parasitic patch and radiation patch for the purpose of miniaturize. And the form (${\varepsilon}_r=1.03$) were to fix the separated radiation patch and ground plans by air. Designed frequency bandwidth(VSWR 2:1) of the antenna showed broadband characteristic of $4.9[GHz]{\sim}6.1[GHz]$ to about 1.2[GHz]. Also the E-plan and H-plan profit 12[dBi] above, the 3[dB] beamwidth showed the characteristic over the E-plan $30^{\circ}$ and H-plan $60^{\circ}$ to be improved.

  • PDF

Circular Polarization of Sierpinski Fractal Triangular Antenna by Sequential Rotation Techniques (Sierpinski 프랙탈 삼각형의 Sequential 회전 기법에 의한 원형 편파 특성)

  • 심재륜
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.3
    • /
    • pp.440-444
    • /
    • 2002
  • A microstrip patch antenna with circular polarization based on the Sierpinski fractal geometry is proposed. The Sierpinski fractal is composed of 3 equilaterial triangular patch and is easy to produce a circular polarization by sequentially rotation techniques. The characteristics of a 1x3 antenna array from Sierpinski geometry are investigated, i.e. port isolation and AR(axial Ratio).

Analysis and Implementation of the Stacked Cavity-Backed Circular Microstrip Patch Antenna (적층형 Cavity-Backed 원형 마이크로스트립 안테나 해석 및 구현에 관한 연구)

  • 박경빈;정영배;최동혁;박성욱;문영찬;전순익
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.1
    • /
    • pp.37-45
    • /
    • 2000
  • Though microstrip antenna has several advantages, it makes engineers struggle against the difficulties of narrow bandwidth and scan-blindness with probe-feeding and array configuration. To overcome these disadvantages, stacked patch and cavity-backed structure had been proposed. But this structure can not be analyzed easily because we have no concrete means to analyze it. So the algorithm to analyze the structure should be established to make it useful. This paper explained the algorithm of moment method to analyze the structure and verified it by comparing the calculated and measured results.

  • PDF

Characteristics of Circular Polarization of Microstrip Patch Antenna Based on the Sierpinski Fractal Equilaterial Triangular (Sierpinski 프랙탈 삼각형에 기초한 마이크로스트립 패치 안테나의 원형 편파 특성)

  • 심재륜
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.234-237
    • /
    • 2002
  • A microstrip patch antenna with circular polarization based on the Sierpinski fractal is composed of 3 equilaterial triangular Polarization by sequentially rotation techniques. The characteristics of a $1\times3$ antenna array from Sierpinski geometry an investigated, i.e. port isolation and AR(axial Ratio).

  • PDF

Design of a Compact Antenna Array for Satellite Navigation System Using Hybrid Matching Network

  • Lee, Juneseok;Cho, Jeahoon;Ha, Sang-Gyu;Choo, Hosung;Jung, Kyung-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2045-2049
    • /
    • 2018
  • An antenna arrays for a satellite navigation systems require more antenna elements to mitigate multiple jamming signals. In order to maintain the small array size while increasing the number of antenna elements, miniaturization technique is essential for antenna design. In this work, an electrically small circular microstrip patch antenna with a 3 dB hybrid coupler is designed as an element antenna, where the 3 dB hybrid coupler can yield the circularly polarized radiation characteristic. The miniaturized element antenna typically has too large capacitance in GPS L1 and GLONASS G1 bands, making it difficult to match with a single stand-alone non-Foster matching circuit (NFMC) in a stable state. Therefore, we propose a new matching technique, referred to as the hybrid matching method, which consists of a NFMC and a passive circuit. This passive tuning circuit manages reactance of antenna elements at an appropriate capacitance without a pole in the operating frequency range. The antenna array is fabricated, and the measured results show a reflection coefficient of less than -10 dB and an isolation of greater than 50 dB. In addition, peak gain of the proposed antenna is increased by 22.3 dB compared to the antenna without the hybrid matching network.

Characteristic Analysis of Meshed SF-MPAA Characteristics depend on Mesh Transparency (그물의 투명도에 따른 그물망 SF-MPAA의 특성 분석)

  • Ki, Hyeon-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.163-168
    • /
    • 2019
  • In this paper, We investigated the effects of the transparency variations from 0% to 90.7% on meshed SF-MPAA(Series Fed Microstrip Patch Array Antenna). For this, we designed SF-MPAA in 3 cases that is meshed radiation patches, meshed GND, and meshed radiation patches plus GND. And we investigated the characteristics of SF-MPAA depend on the variations of transparency in each case. In the case of meshed radiation patches, the gain decreased by 18.8% and the operating frequency is lower by 5.5%. In the case of meshed GND, the gain decreased by 15.4% and the operating frequency is lower by 5.56%. In the case of meshed radiation patches plus GND, the gain decreased by 31.94% and the operating frequency is lower by 7.6%. However, the bandwidth and the SLL(Side Lobe Level) did not show apparent tendency on the the variations of transparency.

Design and Implementation of 2.4 GHz Beamforming antenna using 4×4 Butler Matrix (4×4 버틀러 매트릭스를 이용한 2.4 GHz 빔포밍 안테나 설계 및 구현)

  • Kim, Young-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1687-1695
    • /
    • 2021
  • In this paper, it is designed and analyzed the beamforming antenna using the butler matrix. The operating frequency of the proposed beamforing antenna is ISM band of 2.4 GHz band and the component of the beamforing antenna consisted of a 1×4 array antenna and a 4×4 butler matrix. Each output port of 4×4 butler matrix outputs the signal having a different phase, it is provided to each input port of 1×4 array antenna. The beamforming antenna with four output ports forms a total of four beams. In order to analyze the radiation pattern of the beamforming antenna, it was provided by switching the signal to the input port and proceeded the Individual analysis for the input port 1 to 4. The main beams of the proposed beamforming antenna were formed in the -12°, 40°, -40° and 12° directions according to each input port, respectively.

Design of Wideband Antenna for IEEE 802.11a (IEEE 802.11a용 광대역 안테나 설계)

  • Ju Seong-Nam;Kim Pyoung-Gug;Kim Kab-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.5 s.108
    • /
    • pp.416-422
    • /
    • 2006
  • In this paper, we have designed and favricated the high gain and wideband microstrip patch antenna including IEEE 802.11a. To widen the bandwidth of microstrip antenna, firstly we have used the microstrip line-coaxial probe feeding method and inserted a U-slot in the rectangular patch. Secondly, to improve the antenna gain, we have used a $2{\times}2$ array structure. From the measured results, wideband characteristics of 1 GHz bandwidth($5.110{\sim}6.142$ GHz) for VSWR<2 was obtained. The measured eain was 13 dBi in both the E-plane and H-plane at the frequency of 5.15 GHz, 5.35 GHz, 5.50 GHz, and 5.85 GHz.

THE DEVELOPMENT OF CIRCULARLY POLARIZED SYNTHETIC APERTURE RADAR SENSOR MOUNTED ON UNMANNED AERIAL VEHICLE

  • Baharuddin, Merna;Akbar, Prilando Rizki;Sumantyo, Josaphat Tetuko Sri;Kuze, Hiroaki
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.441-444
    • /
    • 2008
  • This paper describes the development of a circularly polarized microstrip antenna, as a part of the Circularly Polarized Synthetic Aperture Radar (CP-SAR) sensor which is currently under developed at the Microwave Remote Sensing Laboratory (MRSL) in Chiba University. CP-SAR is a new type of sensor developed for the purpose of remote sensing. With this sensor, lower-noise data/image will be obtained due to the absence of depolarization problems from propagation encounter in linearly polarized synthetic aperture radar. As well the data/images obtained will be investigated as the Axial Ratio Image (ARI), which is a new data that hopefully will reveal unique various backscattering characteristics. The sensor will be mounted on an Unmanned Aerial Vehicle (UAV) which will be aimed for fundamental research and applications. The microstrip antenna works in the frequency of 1.27 GHz (L-Band). The microstrip antenna utilized the proximity-coupled method of feeding. Initially, the optimization process of the single patch antenna design involving modifying the microstrip line feed to yield a high gain (above 5 dBi) and low return loss (below -10 dB). A minimum of 10 MHz bandwidth is targeted at below 3 dB of Axial Ratio for the circularly polarized antenna. A planar array from the single patch is formed next. Consideration for the array design is the beam radiation pattern in the azimuth and elevation plane which is specified based on the electrical and mechanical constraints of the UAV CP-SAR system. This research will contribute in the field of radar for remote sensing technology. The potential application is for landcover, disaster monitoring, snow cover, and oceanography mapping.

  • PDF

Design of Microstrip Patch Antenna on UHF Band using Multiple Meander for Metal Attached (금속 부착용 멀티 미앤더형 UHF 대역 마이크로스트립 패치 안테나 설계)

  • Park, Chan-Hong;Choi, Yong-Seok;Koo, Dong-Jin;Jang, Sung-Won;Seong, Hyeon-Kyeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.307-311
    • /
    • 2012
  • In this paper, a novel particle swarm optimization method based on IE3D is used to design a mobile communication Microstrip Patch Antenna. The aim of the thesis is to Design and fabricate an inset fed rectangular Microstrip Antenna and study the effect of antenna dimensions Length (L), Width (W) and substrate parameters relative Dielectric constant (${\varepsilon}r$), substrate thickness on Radiation parameters of Band width. When the antenna was designed, a dual-band, dual-polarized antenna was used to secure the bandwidth and improve performance, and a coaxial probe feeding method so that the phased array of antenna is easy.

  • PDF