• Title/Summary/Keyword: Pasternak shear foundation

Search Result 200, Processing Time 0.027 seconds

Dynamic Stability Analysis of Thick Plates with Varying Thickness and Concentrated Mass on Inhomogeneous Pasternak Foundation (비균질 Pasternak 지반에 놓인 집중질량을 갖는 변단면 후판의 동적안정해석)

  • Lee, Yong-Soo;Kim, Il-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.8
    • /
    • pp.698-707
    • /
    • 2011
  • This paper is to analyze the stability of the thick plate on inhomogeneous Pasternak foundation, with linearly varying thickness and concentrated mass by finite element method. To verify this finite element method, the results of natural frequencies and buckling stresses by the proposed method are compared with the existing solutions. The dynamic instability regions are decided by the dynamic stability analysis of the thick plate on inhomogeneous Pasternak foundation, with linearly varying thickness and concentrated mass. The non-dimensional Winkler foundation parameter is applied as 100, 1000 and non-dimensional shear foundation parameter is applied as 5. The tapered ratios are applied as 0.25 and 1.0, the ratios of concentrated mass to plate mass as 0.25 and 1.0, and the ratio of in-plane force to critical load as 0.4. As the result of numerical analysis of the thick plate on inhomogeneous Pasternak foundation for $u{\times}v=300cm{\times}300cm$ and $a{\times}b=600cm{\times}600cm$, instability areas of the thick plate which has the larger rigidity of inner area are farther from ${\beta}$-axis and narrower than those which has the larger rigidity of outer area.

Parametric Studies of Flexural Free Vibrations of Circular Strip Foundations with Various End Constraints Resting on Pasternak Soil (경계조건 변화에 따른 Pasternak 지반으로 지지된 원호형 띠기초의 휨 자유진동에 관한 변수연구)

  • Lee, Byoung-Koo;Li, Guang-Fan;Kang, Hee-Jong;Yoon, Hee-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.835-846
    • /
    • 2007
  • This paper deals with the flexural free vibrations of circular strip foundation with the variable breadth on Pasternak soil. The breadth of strip varies with the linear functional fashion, which is symmetric about the mid-arc. Differential equations governing flexural free vibrations of such strip foundation are derived, in which the elastic soil with the shear layer, i.e. Pasternak soil, is considered. Effects of the rotatory and shear deformation are included in the governing equations. Differential equations are numerically solved to calculate the natural frequencies and mode shapes. In the numerical examples, the hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered. Four lowest frequency parameters accompanied with their corresponding mode shapes are reported and parametric studies between frequency parameters and various system parameters are investigated.

Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation

  • Rabia, Benferhat;Tahar, Hassaine Daouadji;Abderezak, Rabahi
    • Coupled systems mechanics
    • /
    • v.9 no.6
    • /
    • pp.499-519
    • /
    • 2020
  • The effect of porosity on the thermo-mechanical behavior of simply supported functionally graded plate reposed on the Winkler-Pasternak foundation is investigated analytically in the present paper using new refined hyperbolic shear deformation plate theory. Both even and uneven distribution of porosity are taken into account and the effective properties of FG plates with porosity are defined by theoretical formula with an additional term of porosity. The present formulation is based on a refined higher order shear deformation theory, which is based on four variables and it still accounts for parabolic distribution of the transverse shearing strains and stresses through the thickness of the FG plate and takes into account the various distribution shape of porosity. The elastic foundation is described by the Winkler-Pasternak model. Anew modified power-law formulation is used to describe the material properties of FGM plates in the thickness direction. The closed form solutions are obtained by using Navier technique. The present results are verified in comparison with the published ones in the literature. The results show that the dimensionless and stresses are affected by the porosity volume fraction, constituent volume fraction, and thermal load.

Free Vibrations of Cylindrical Shells on Inclined Partial Elastic Foundation (경사진 부분 탄성 지지부를 갖는 원통셸의 자유진동)

  • Park, Kyung-Jo;Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.261-267
    • /
    • 2014
  • The free vibration characteristics of cylindrical shells on inclined partial elastic foundations are investigated by an analytical method. The cylindrical shell is partially surrounded by the elastic foundations, these are represented by the Winkler or Pasternak model. The area of elastic foundation is not uniform and varies along the axial direction of the shell. The motion of shell is represented by first-order shear deformation theory(FSDT) to account for rotary inertia and transverse shear strains. The governing equation is obtained using the Rayleigh-Ritz method and a variation approach. To validate the present method, the numerical example is presented and compared with the present FEA results. The numerical results reveal that the elastic foundation has significant effect on vibration characteristics.

Vibration Analysis of Opening Thick Plate Subjected to Static Inplane Stress (정면내응력을 받는 유공 후판의 진동해석)

  • 김일중;오숙경;박형복;이용수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.797-801
    • /
    • 2003
  • This paper has the object of investigating natural frequencies of opening thick plates on Pasternak foundation by means of finite element method and providing Kinematic design data for mat of building structures. Vibration analysis that opening plate subjected to In-plane stress is presented in this paper. Finite element analysis of rectangular opening plate is done by use of rectangular finite element with 8-nodes. In order to analysis plate which is supported on Pasternak foundation, the Winkler foundation parameter is varied with 0, 10, 102, 103 and the shear foundation parameter is 0, 5, 10, 15. The ratio of In-plane force to critical load is applied as 0.2, 0.8, respectively. This paper analyzed varying opening Position and opening size.

  • PDF

Dynamic Stability Analysis of Tapered Thick Plate (변단면 후판의 동적안정해석)

  • Kim, Il-Jung;Oh, Soog-Kyoung;Lee, Yong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.894-897
    • /
    • 2004
  • This paper has the object of investigating dynamic stability of opening thick plates on Pasternak foundation by means of finite element method and providing Kinematic design data for mat of building structures. Finite element analysis of Tapered Thick plate is done by use of rectangular (mite element with 8-nodes. In order to analysis plate which is supported on Pasternak foundation, the Winkler foundation parameter is varied with $10^2,\;10^3$ and the shear foundation parameter is 5, 10. The ratio of In-plane force to critical load is applied as 0.4, 0.6, respectively. This paper analyzed varying Tapered Ratio.

  • PDF

Electro-magneto-elastic analysis of a three-layer curved beam

  • Arefi, Mohammad;Zenkour, Ashraf M.
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.695-703
    • /
    • 2017
  • In this paper, based on first-order shear deformation theory, the governing equations of motion for a sandwich curved beam including an elastic core and two piezo-magnetic face-sheets are presented. The curved beam model is resting on Pasternak's foundation and subjected to applied electric and magnetic potentials on the piezo-magnetic face-sheets and transverse loading. The five equations of motion are analytically solved and the bending and vibration results are obtained. The influence of important parameters of the model such as direct and shear parameters of foundation and applied electric and magnetic potentials are studied on the electro-mechanical responses of the problem. A comparison with literatures was performed to validate our formulation and results.

Effect of the variable visco-Pasternak foundations on the bending and dynamic behaviors of FG plates using integral HSDT model

  • Hebali, Habib;Chikh, Abdelbaki;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Hussain, Muzamal;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • v.28 no.1
    • /
    • pp.49-64
    • /
    • 2022
  • In this work, the bending and dynamic behaviors of advanced composite plates resting on variable visco-Pasternak foundations are studied using a simple shear deformation integral plate model. The research is carried out with a view to a three-parameter foundation including the influences of the variable Winkler coefficient, the constant Pasternak coefficient and the damping coefficient of the elastic medium. The present theory uses a displacement field with integral terms instead of derivative terms by including also the shear deformation effect without introducing the shear correction factors. The equations of motion for advanced composite plates are obtained using the Hamilton principle. Analytical solutions for the bending and dynamic analysis are deduced for simply supported plates resting on variable visco-Pasternak foundations. Some numerical results are presented to demonstrate the impact of material index, elastic foundation type, and damping coefficient of the foundation, on the bending and dynamic responses of advanced composite plates.

Waves dispersion in an imperfect functionally graded beam resting on visco-Pasternak foundation

  • Saeed I. Tahir;Abdelbaki Chikh;Ismail M. Mudhaffar;Abdelouahed Tounsi;Mohammed A. Al-Osta
    • Geomechanics and Engineering
    • /
    • v.33 no.3
    • /
    • pp.271-277
    • /
    • 2023
  • This article investigates the effect of viscoelastic foundations on the waves' dispersion in a beam made of ceramic-metal functionally graded material (FGM) with microstructural defects. The beam is considered to be shear deformable, and a simple three-unknown sinusoidal integral higher-order shear deformation beam theory is applied to represent the beam's displacement field. Novel to this study is the investigation of the impact of viscosity damping on imperfect FG beams, utilizing a few-unknowns theory. The stresses and strains are obtained using the two-dimensional elasticity relations of FGM, neglecting the normal strain in the beam's depth direction. The variational operation is employed to define the dispersion relations of the FGM beam. The influences of the material gradation exponent, the beam's thickness, the porosity, and visco-Pasternak foundation parameters are represented. Results showed that phase velocity was inversely proportional to the damping and porosity of the beams. Additionally, the foundation viscous damping had a stronger influence on wave velocity when porosity volume fractions were low.

An inverse hyperbolic theory for FG beams resting on Winkler-Pasternak elastic foundation

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.6
    • /
    • pp.671-689
    • /
    • 2018
  • Bending, buckling and free vibration responses of functionally graded (FG) higher-order beams resting on two parameter (Winkler-Pasternak) elastic foundation are studied using a new inverse hyperbolic beam theory. The material properties of the beam are graded along the thickness direction according to the power-law distribution. In the present theory, the axial displacement accounts for an inverse hyperbolic distribution, and the transverse shear stress satisfies the traction-free boundary conditions on the top and bottom surfaces of the beams. Hamilton's principle is employed to derive the governing equations of motion. Navier type analytical solutions are obtained for the bending, bucking and vibration problems. Numerical results are obtained to investigate the effects of power-law index, length-to-thickness ratio and foundation parameter on the displacements, stresses, critical buckling loads and frequencies. Numerical results by using parabolic beam theory of Reddy and first-order beam theory of Timoshenko are specially generated for comparison of present results and found in excellent agreement with each other.