• Title/Summary/Keyword: Passive imaging

Search Result 80, Processing Time 0.023 seconds

AKARI Observation of the North Ecliptic Pole (NEP) Supercluster at z=0.087

  • Ko, Jong-Wan;Im, Myung-Shin;AKARINEP-Wideteam, AKARINEP-Wideteam
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.74.2-74.2
    • /
    • 2010
  • We present a multi-wavelength study of a supercluster in the NEP region at z=0.087, using AKARI (Infrared space telescope) NEP-Wide (5.8 deg2) survey which has obtained an unique IR imaging dataset with contiguous wavelength coverage from 2 to $24{\mu}m$, overcoming the Spitzer limitation of imaging capability at $10-20{\mu}m$. The NEP-Wide survey is also covered in other wavelength such as X-ray, Radio, GALEX UV in the archive, optical (BRI from Maidanak 1.5m and CFHT's MegaPrime), and NIR imaging data (JH from KPNO 2.1m), with nearly 1900 optical spectra, mostly obtained by our group using MMT/Hectospec and WIYN/Hydra. Armed with the multiwavelength datasets, we investigate the connection between IR properties of galaxies and their environments as a tool to understand the evolution of galaxies in a supercluster environment. Specific attention will be given to MIR emission which can trace star formation activities and passive phases right after post-starbursts, and its relation to other wavelength data.

  • PDF

New Acoustic Imaging Method Development for Localization of an Underground Acoustic Source Using a Passive SONAR System

  • Jarng, Soon-Suck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.2E
    • /
    • pp.10-17
    • /
    • 1999
  • The aim of the work described in this paper is to develop a complex underground acoustic system which detects and localizes the origin of an underground hammering sound using an array of hydrophones located about 100m underground. Three different methods for the sound localization will be presented, a time-delay method, a power-attenuation method and a hybrid method. In the time-delay method, the cross correlation of the signals received from the array of sensors is used to calculate the time delays between those signals. In the power-attenuation method, the powers of the received signals provide a measure of the distances of the source from the sensors. In the hybrid method, both informations of time-delays and power-ratios are coupled together to produce better performance of position estimation. A new acoustic imaging technique has been developed for improving the hybrid method. This new acoustic imaging method shows the multi-dimensional distribution of the normalized cost function, so as to indicate the trend of the minimizing direction toward the source location. For each method the sound localization is carried out in three dimensions underground. The distance between the true and estimated origins of the source is 28m for a search area of radius 250m.

  • PDF

MIRIS 우주관측 카메라 비행모델 Passive Cooling Test

  • Park, Yeong-Sik;Mun, Bong-Gon;Cha, Sang-Mok;Lee, Deok-Haeng;Lee, Dae-Hui;Han, Won-Yong;Jeong, Ung-Seop;Lee, Chang-Hui;Park, Seong-Jun;Nam, Uk-Won;Ga, Neung-Hyeon;Park, Jang-Hyeon;Lee, Seung-U;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.56.1-56.1
    • /
    • 2010
  • MIRIS(Multipurpose InfraRed Imaging System)는 과학기술위성 3호의 주 탑재체로서 2011년 발사예정인 다목적 적외선 카메라 시스템이다. MIRIS는 우주관측 카메라와 지구관측 카메라로 구성되어 있으며, 우주관측 카메라는 $0.9-2.0{\mu}m$ 영역에서 3.67 deg. x 3.67 deg. FOV로 우리 은하평면 survey 관측과 우주배경복사(CIB) 관측을 수행할 것이다. 현재 MIRIS는 비행모델 개발 마무리 단계에 있으며, 검교정 시험, 열-진공 시험, 진동 시험 등을 수행하고 나면 2010년 말 위성 본체와의 조립을 진행할 것이다. 우주관측 카메라는 궤도상에서 태양, 지구의 적외선 복사와 망원경과 검출기 주변에서 발생하는 열잡음을 줄이기 위해 냉각이 필요하며, 제한된 위성의 무게와 부피, 전력등의 요구조건들 때문에 망원경 및 구조체의 복사냉각(Passive Cooling) 방법을 선택하였다. Passive cooling으로 우주관측 카메라의 망원경이 200K 이하로 냉각되면, dewar에 설치된 소형 냉각기를 가동하여 적외선 센서를 80K로 냉각한다. 위성체 내벽과 우주관측카메라의 각 구조체들 사이의 복사를 차단하기위해 30층의 MLI를 적용 하였고, 각 구조체들간의 열전도를 최소화하기위해 GFRP supporter를 적용하였다. 이 실험은 천문(연)에서 자체 제작한 열-진공 챔버를 활용하여 진행하였으며, 이미 인증모델에 대한 passive cooling 실험을 두 차례 실시하였고, 그 실험 결과를 반영하여 최종 비행모델에 대한 실험을 수행하였으며, 그 실험 결과에 대해 논의 하고자 한다.

  • PDF

On Orbit Data Analysis About the Passive Cooling of MIRIS, a Compact Space Infrared Telescope

  • Lee, Duk-Hang;Moon, Bongkon;Jeong, Woong-Seob;Pyo, Jeonghyun;Lee, Chol;Kim, Son-Goo;Park, Youngsik;Lee, Dae-Hee;Park, Sung-Joon;Kim, Il-Joong;Park, Won-Kee;Seon, Kwang-Il;Nam, Uk-Won;Cha, Sang-Mok;Park, Kwijong;Park, Jang-Hyun;Yuk, In-Soo;Ree, Chang Hee;Jin, Ho;Yang, Sun Choel;Park, Hong-Young;Shin, Ku-Whan;Suh, Jeong-Ki;Rhee, Seung-Wu;Park, Jong-Oh;Lee, Hyung Mok;Matsumoto, Toshio;Han, Wonyong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.50.1-50.1
    • /
    • 2014
  • The Multi-purpose InfraRed Imaging System (MIRIS) is the main payload of Science and Technology Satellite 3 (STSAT-3), which was launched onboard Dnepr rocket from Russian Yasny Launch Base in November 2013. The MIRIS is an infrared (IR) camera, and the telescope has to be cooled down to below 200K in order to reduce thermal background noise. For the effective cooling and low-power consumption, we applied passive cooling method to the thermal design of the MIRIS. We also conducted thermal analysis and tested for the passive cooling before the launch of STSAT-3. After the launch, we have received State-of-Health (SOH) data from the satellite on orbit, including temperature monitoring results. It is important that the temperature of the telescope was shown to be cooled down to below 200K. In this paper, we present both the temperature data of the MIRIS on orbit and the thermal analysis results in the laboratory. We also compare these results and discuss the verification of the passive cooling.

  • PDF

Depth Extraction of Integral Imaging Using Correlation (상관관계를 활용한 집적 영상의 깊이 추출 방법)

  • Kim, Youngjun;Cho, Ki-Ok;Kim, Cheolsu;Cho, Myungjin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1369-1375
    • /
    • 2016
  • In this paper, we present a depth extraction method of integral imaging using correlation between elemental images with phase only filter. Integral imaging is a passive three-dimensional (3D) imaging system records ray information of 3D objects through lenslet array by 2D image sensor, and displays 3D images by using the similar lenslet array. 2D images by lenslet array have different perspectives. These images are referred to as elemental images. Since the correlation can be calculated between elemental images, the depth information of 3D objects can be extracted. To obtain high correaltion between elemental images effectively, in this paper, we use phase only filter. Using this high correlation, the corresponding pixels between elemental images can be found so that depth information can be extracted by computational reconstruction technique. In this paper, to prove our method, we carry out optical experiment and calculate Peak Sidelobe Ratio (PSR) as a correlation metric.

Development of an Imaging-DOAS System for 2-D Remote Sensing of Atmospheric Gases (대기가스오염물질의 이차원 원격 모니터링을 위한 Imaging-DOAS 개발)

  • Lee, Han-Lim;Lee, Chul-Kyu;Jung, Jin-Sang;Park, Jeong-Eun;Kim, Young-Joon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.150-157
    • /
    • 2006
  • Spatially resolved remote identification and quantification of trace gases in the atmosphere is desirable in various fields of scientific research as well as in public security and industrial contexts. Environmental observations investigating causes, extent md consequences of air pollution are of fundamental interest. We present an Imaging-DOAS system, a ground based remote sensing instrument that allows spatially resolved mapping of atmospheric trace gases by a differential optical absorption spectroscopy(DOAS) with sun scattered light as the light source. A passive DOAS technique permits the identification and quantification of various gases, e.g., $NO_2,\;SO_2,\;and\;CH_2O$, from their differential absorption structures with high sensitivity. The Imaging-DOAS system consists of a scanning mirror, a focusing lens, a spectrometer, a 2-D CCD, ad the integral control software. An imaging spectrometer simultaneously acquires spectral information on the incident light in one spatial dimension(column) and sequentially scans the next spatial dimension with a motorized scanning mirror. The structure of the signal acquisition system is described in detail and the evaluation method is also briefly discussed. Applications of imaging of the $NO_2$ contents in the exhaust plumes from a power plant are presented.

MIRIS 냉각 설계 검증을 위한 열해석 연구

  • Lee, Deok-Haeng;Mun, Bong-Gon;Park, Yeong-Sik;Lee, Dae-Hui;Jeong, Ung-Seop;Lee, Chang-Hui;Nam, Uk-Won;Park, Seong-Jun;Pyo, Jeong-Hyeon;Cha, Sang-Mok;Ga, Neung-Hyeon;Park, Jang-Hyeon;Seon, Gwang-Il;Lee, Seung-U;Park, Jong-O;Lee, Hyeong-Mok;Matsumoto, Toshio;Han, Won-Yong
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.23.2-23.2
    • /
    • 2011
  • 과학기술위성3호의 주탑재체 Multi-purpose Infra-Red Imaging System(MIRIS)는 한국천문연구원이 개발하고 있는 소형 적외선 우주망원경이다. MIRIS는 적외선 센서의 열잡음을 최소화시키기 위하여 망원경의 온도가 허용범위를 넘지 않도록 설계되었다. 특히 3K의 심우주를 향해 MIRIS의 복사열을 자연 방출하는 Passive cooling은 임무 성공에 영향을 미치는 매우 중요한 과정이다. 이를 검증하고자 NX 7.0(Space Systems Thermal, TMG 탑재)을 사용하여 열 해석을 수행하였다. 각 부품별로 물성과 열광학 특성을 적용하여 전도 및 복사를 통한 열전달 과정을 계산하였고, MIRIS의 궤도 특성을 고려하여 정상상태에서의 망원경 온도를 얻었다. 그 결과 Passive cooling을 통해 MIRIS 망원경이 허용범위 아래로 냉각되는 것을 확인하였다.

  • PDF

MIRIS 적외선 우주관측 카메라 Passive cooling test

  • Park, Yeong-Sik;Jeong, Ung-Seop;Mun, Bong-Gon;Cha, Sang-Mok;Lee, Chang-Hui;Lee, Dae-Hui;Park, Seong-Jun;Nam, Uk-Won;Park, Jang-Hyeon;Yuk, In-Su;Ga, Neung-Hyeon;Lee, Mi-Hyeon;Mok, Min-Jeong;Lee, Deok-Haeng;Lee, Seung-U;Han, Won-Yong
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.45.2-45.2
    • /
    • 2009
  • 과학기술위성 3호의 주탑재체인 MIRIS (Multi-purpose InfraRed Imaging System)는 우주관측카메라, 지구관측카메라로 구성되어 있으며, 우주관측카메라는 구경 80mm(f/2)의 광시야 굴절식 광학계로 구성되어 있다. 지상과 우주에서 사용하는 적외선 망원경의 경우 열잡음을 줄이기 위해 광학계과 검출기를 냉각하게 되는데, MIRIS의 경우 공간과 무게를 줄이기 위해 복사 냉각을 위한 passive cooling 방법으로 설계를 하였다. 우주관측 카메라의 광학계를 200K 이하로 냉각하기 위하여, 관측시야 밖에서 입사하는 불필요한 photon 들을 반사시키기 위한 winston cone baffle, 위성체로부터 유입되는 열을 차단하기 위한 30층의 MLI(Multi Layer Insulation), 광학계와 구조물의 지지를 열전달율이 낮은 GFRP(Glass Fiber Reinforced Polymer)로 설계하여 제작하였다. 우주관측 카메라를 열진공 챔버 내부에 설치하고 우주공간과 비슷한 환경을 조성하여 광학계가 200K 이하로 냉각되는 것을 확인 하였으며 그 실험 결과에 대해 논의 하고자 한다.

  • PDF

Fast Remote Detection Algorithms for Chemical Gases Using Pre-Detection with a Passive FTIR Spectrometer (수동형 FTIR 분광계에서 초동 탐지 기법을 이용한 고속 원거리 화학 가스 탐지 알고리즘)

  • Yu, Hyeonggeun;Park, Dongjo;Nam, Hyunwoo;Park, Byeonghwang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.744-751
    • /
    • 2018
  • In this paper, we propose a fast detection and identification algorithm of chemical gases with a passive FTIR spectrometer. We use a pre-detection algorithm that can reduce the spatial region effectively for gas detection and the candidates of the target. It is possible to remove background spectra effectively from measured spectra with the least-squares method. The CC(Correlation Coefficients) and the SNR(Signal-to-Noise Ratio) methods are used for the detection of target gases. The proposed pre-detection algorithm allows the total process of chemical gas detection to be performed with lower complexity compared with the conventional algorithms. This paper can help developing real-time chemical detection instruments and various applications of FTIR spectrometers.

Early and Delayed Postoperative Rehabilitation after Arthroscopic Rotator Cuff Repair: A Comparative Study of Clinical Outcomes

  • Choi, Sungwook;Seo, Kyu Bum;Shim, Seungjae;Shin, Ju Yeon;Kang, Hyunseong
    • Clinics in Shoulder and Elbow
    • /
    • v.22 no.4
    • /
    • pp.190-194
    • /
    • 2019
  • Background: The duration of immobilization after arthroscopic rotator cuff repair and the optimal time to commence rehabilitation are still the subject of ongoing debates. This study was undertaken to evaluate the functional outcome and rotator cuff healing status after arthroscopic rotator cuff repair by comparing early and delayed rehabilitation. Methods: Totally, 76 patients with small, medium, and large sized rotator cuff tears underwent arthroscopic repair using the suturebridge technique. In early rehabilitation group, 38 patients commenced passive range of motion at postoperative day 2 whereas 38 patients assigned to the delayed rehabilitation group commenced passive range of motion at postoperative week 3. At the end of the study period, clinical and functional evaluations (Constant score, the University of California, Los Angeles [UCLA] shoulder score) were carried out, subsequent to measuring the range of motion, visual analogue scale for pain, and isokinetic dynamometer test. Rotator cuff healing was confirmed by magnetic resonance imaging at least 6 months after surgery. Results: No significant difference was obtained in range of motion and visual analogue scale between both groups. Functional outcomes showed similar improvements in the Constant score (early: 67.0-88.0; delayed: 66.9-91.0; p<0.001) and the UCLA shoulder score (early: 20.3-32.3; delayed: 20.4-32.4; p<0.001). Furthermore, rotator cuff healing showed no significant differences between the groups (range, 6-15 months; average, 10.4 months). Conclusions: Delayed passive rehabilitation does not bring about superior outcomes. Therefore, early rehabilitation would be useful to help patients resume their daily lives.