Development of an Imaging-DOAS System for 2-D Remote Sensing of Atmospheric Gases

대기가스오염물질의 이차원 원격 모니터링을 위한 Imaging-DOAS 개발

  • Lee, Han-Lim (Advanced Environmental Monitoring Research Center(ADEMRC), Department of Environmental Science & Engineering, Gwangju Institute of Science & Technology(GIST)) ;
  • Lee, Chul-Kyu (Advanced Environmental Monitoring Research Center(ADEMRC), Department of Environmental Science & Engineering, Gwangju Institute of Science & Technology(GIST)) ;
  • Jung, Jin-Sang (Advanced Environmental Monitoring Research Center(ADEMRC), Department of Environmental Science & Engineering, Gwangju Institute of Science & Technology(GIST)) ;
  • Park, Jeong-Eun (Advanced Environmental Monitoring Research Center(ADEMRC), Department of Environmental Science & Engineering, Gwangju Institute of Science & Technology(GIST)) ;
  • Kim, Young-Joon (Advanced Environmental Monitoring Research Center(ADEMRC), Department of Environmental Science & Engineering, Gwangju Institute of Science & Technology(GIST))
  • 이한림 (광주과학기술원, 환경공학과, 환경모니터링 신기술 연구센터) ;
  • 이철규 (광주과학기술원, 환경공학과, 환경모니터링 신기술 연구센터) ;
  • 정진상 (광주과학기술원, 환경공학과, 환경모니터링 신기술 연구센터) ;
  • 박정은 (광주과학기술원, 환경공학과, 환경모니터링 신기술 연구센터) ;
  • 김영준 (광주과학기술원, 환경공학과, 환경모니터링 신기술 연구센터)
  • Published : 2006.02.28

Abstract

Spatially resolved remote identification and quantification of trace gases in the atmosphere is desirable in various fields of scientific research as well as in public security and industrial contexts. Environmental observations investigating causes, extent md consequences of air pollution are of fundamental interest. We present an Imaging-DOAS system, a ground based remote sensing instrument that allows spatially resolved mapping of atmospheric trace gases by a differential optical absorption spectroscopy(DOAS) with sun scattered light as the light source. A passive DOAS technique permits the identification and quantification of various gases, e.g., $NO_2,\;SO_2,\;and\;CH_2O$, from their differential absorption structures with high sensitivity. The Imaging-DOAS system consists of a scanning mirror, a focusing lens, a spectrometer, a 2-D CCD, ad the integral control software. An imaging spectrometer simultaneously acquires spectral information on the incident light in one spatial dimension(column) and sequentially scans the next spatial dimension with a motorized scanning mirror. The structure of the signal acquisition system is described in detail and the evaluation method is also briefly discussed. Applications of imaging of the $NO_2$ contents in the exhaust plumes from a power plant are presented.

태양산란광을 광원으로 사용하고 DOAS(differential Optical Absorption Spectroscopy) 기술을 이용하여 분석 하여 대기 오염물질의 이차원 공간적 분포를 이미지화 할 수 있는 지상용 원격 모니터링 장비인 Imaging-DOAS 시스템을 소개한다. 인공적 램프를 광원으로 사용하는 능동형 DOAS와 마찬 가지로 수동형 DOAS 기술도 대기 가스상의 물질의 차등흡수 변화(narrow band absorption) 구조를 이용하여 $NO_2,\;SO_2,\;CH_2O$ 등의 다양한 물질을 높은 정밀도를 가지며 측정 할 수 있다. Imaging-DOAS는 스캐닝 거울, 집광 렌즈, 분광기와 CCD, 그리고 시스템을 통합 제어하는 소프트웨어로 이루어져 있으며, 스캐닝 거울로 여러 번 스캐닝을 연속적으로 하여 대기 가스물질의 공간적 이차원 분포를 이미지화 시킨다. 본 연구에서는 개발된 Imaging-DOAS 시스템 구조 및 수신된 신호를 이용한 분석 방법을 소개 하며 처음으로 국내 한 화력 발전소에서 발생되는 $NO_2$ 양의 공간적 분포를 Imaging-DOAS를 이용하여 원격 측정 하였다.

Keywords

References

  1. Noxon, J. F., 'Nitrogen Dioxide in the Stratosphere and Troposphere measured by Ground-based Absorption Spec- troscopy,' Science, 189, 547 - 549(1975) https://doi.org/10.1126/science.189.4202.547
  2. Harrison, A. W., 'Midsummer stratospheric$NO_2$ at latitude 40_S,' Can. J. Phys., 57, 1110-1116(1979) https://doi.org/10.1139/p79-155
  3. Solomon, S., Mount, G. H., Sanders, R. W., Jakoubek, R. O., and Schrneltekopf, A L., 'Observations of the nighttime abundance of OCIO in the winter stratosphere above Thule, Greenland,' Science, 242, 550-555(1988) https://doi.org/10.1126/science.242.4878.550
  4. Solomon, S., Smith, J. P., Sanders, R. W., Perliski, L., Miller, H. L., Mount, G. H., Keys, J. G., and Schmeltekopf, A. L., 'Visible and near-ultraviolet spectroscopy at McMurdo station, Antarctica, 8, Observations of nighttime $NO_2 $ and $NO_3 $ from April to October 1991,' J. Geophys. Res., 98, 993 -1000(1993) https://doi.org/10.1029/92JD02390
  5. Aliwell, S. R., Jones, R. L., and Fish, D. J., 'Midlatitude observations of the seasonal variation of BrO, 1. Zenith-sky measurements,' Geophys. Res. Lett., 24, 1195 -1198(1997) https://doi.org/10.1029/97GL01165
  6. Richter, A, Eisinger, M., Ladstatter WeiBenmayer, A, Wittrock, F., Burrows, J. P., 'DOAS zenith-sky observations: 2. Seasonal variations of BrO over Bremen(53_N) 1994-1995,' J. Atmos. Chem., 32, 83 -99(1999) https://doi.org/10.1023/A:1006077725894
  7. Wittrock, F., Muller, R., Richter, A., Bovensmann, H., and Burrows, J. P., 'Measurements of iodine monoxide (IO) above Spitsbergen,' Geophys. Res. Lett., 27, 1471-1474(2000) https://doi.org/10.1029/1999GL011146
  8. Arpaq, K. H., Johnston, P. V., Miller, H. L., Sanders, R. W., and Solomon, S. 'Observations of the stratospheric BrO column over Colorado, 40_N,' J. of Geophys. Res., 99(D4), 8175-8181(1994) https://doi.org/10.1029/94JD00144
  9. Honninger, G., 'Halogen Oxide Studies in the Boundary Layer by Multi Axis Differential Optical Absorption Spectroscopy and Active Longpath-DOAS,' Ph.D. thesis, Universitat Heidelberg, Institut fur Umweltphysik, http:// www;ub.uni-heidelberg.delarchiv/1940(2002)
  10. Bobrowski, N., Honninger, G., Galle, B., and Platt, U., 'Detection of bromine monoxide in a volcanic plume,' Nature, 423, 273 -276(2003) https://doi.org/10.1038/nature01625
  11. Lee, C. K., Kim, Y. J. Tanimoto, H., Bobrowski, N., Platt, U., Mori, T., Yamamoto, K., and Hong, C. S., 'High CIO and ozone depletion observed in the plume of Sakurajima volcano, Japan,' Geophys. Res. Lett., 32, L21809, doi: 10.1 029/2005GL023 785(2005) https://doi.org/10.1029/2005GL023785
  12. Weaver, A, Solomon, S., Sanders, R. W., Arpag, K., and Miller, H. L., 'Atmospheric $ NO_3$ 5. Off-axis measurements at sunrise: Estimates of tropospheric $ NO_3$ at 40_N,' J Geophys. Res., 101(Dl3), 18 605 - 18 612(1996)
  13. Lohberger, F., Honninger, G., and Platt, U, 'Ground based imaging differential optical absorption spectroscopy of atmospheric gases.,' Appl. Opt., 43, 4711-4717 (2004) https://doi.org/10.1364/AO.43.004711
  14. Nieke, J., Schwarzer, H., Neumann, A., and Zimmermann, G., 'Imaging space borne and airborne sensor systems in the beginning of the next century,' in Sensors, Systems and Next Generation Satellite, H. Fujisada, ed., Proc. SPIE 3221, 581 - 592(1997)
  15. Preston, K., 'The retrieval of $ NO_2$ vertical profiles from ground based Twilight UV-Visible Absorption Measurements,' PhD dissertation at Pembroke College, Cambridge( 1996)
  16. Platt, D., 'Differential Optical Absorption Spectroscopy (DOAS),' in Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., John Wiley, New York, pp. 27 - 83(1994)
  17. Chance, K. V. and Spurr, R. J. D., 'Ring effect studies: Rayleigh scattering, including molecular parameter for rotational Raman scattering, and the Fraunhofer spectrum,' Appl. Optics, 36, 5224-5230(1997) https://doi.org/10.1364/AO.36.005224
  18. Fish, D. J. and Jones, R. L., 'Rotational Raman scattering and the Ring effect in zenith-sky spectra,' Geophys. Res. Lett., 22, 811 -814(1995) https://doi.org/10.1029/95GL00392
  19. Vandaele, A. C., Hermans, C., Simon, P. C., Carleer, M., Colin, R., Fally, S., Merienne, M. F., Jenouvrier, A., and Coquart, B., 'Measurements of the$ NO_2$ absorption cross section from 42000$cm^{-1} $ ' to 10000 $cm^{-1} $ (238-1000 nm) at 220 K and 294 K,' K, J Quant. Spectrosc. Radiat. Transfer., 59, 171-184(1997)
  20. Bogumil, K., Orphal, J., and Homann, T., Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: instrument characterization and reference data for atmospheric remote-sensing in the 230-2380 nm region, J Photochem. Photobiol. A, 157, 167 -184(2003) https://doi.org/10.1016/S1010-6030(03)00062-5
  21. Aliwell, S. R., Roozendael, M. V., Johnston, P. V., Richter, A., Wagner, T., Arlander, D. W., Burrows, J. P., Fish, D. J., Jones, R. L., Tornkvist, K. K., Lambert, J. C., Pfeilsticker, K., and Pundit, I., 'Analysis for BrO in zenith-sky spectra: An intercomparison exercise for analysis improvement,' J Geophys. Res., 107, 10.1029/2001 JD000329(2002)
  22. Stutz, J. and Platt, D., 'Numerical analysis and error estimation of differential optical absorption spectroscopy measurements with least squares methods,' Appl. Opt., 35, 6041-6053(1996) https://doi.org/10.1364/AO.35.006041
  23. Skoog, D. A. and Leary, J. J., 'Principles of instrumental analysis,' Saunders College Publishing, Harcourt Brace College Publishers( 1992)