• Title/Summary/Keyword: Passive Technologies

Search Result 173, Processing Time 0.03 seconds

Development of Nano Ceramic Structures for HEPA Type Breathing Wall (HEPA Filter형 숨쉬는 벽체용 나노세라믹 여재개발)

  • Kim, Jong-Won;Ahn, Young-Chull;Kim, Gil-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.4
    • /
    • pp.274-279
    • /
    • 2008
  • In the perspective of saving energy in buildings, high performance of insulation and air tightness for improving the heating and the cooling efficiency has brought the positive effect in an economical view. However, these building energy saving technologies cause the lack of ventilation, which is the direct cause of increasing the indoor contaminants, and it is also very harmful to residents because they spend over 90% of their time in the indoor area. Therefore, the ventilation is important to keep indoor environment clean and it can also save energy consumption. In this study, a HEPA type breathing wall is designed as a passive ventilation system to collect airborne particles and to supply fresh outdoor air. To make fine porous structures, polymer nano fibers which were made by electro spinning method are used as a precursor. The nano fibers are coated with SiO2 nano particles and finally the HEPA type breathing wall is made by sintering in the electric furnace at $300\sim500^{\circ}C$. The pressure drops of nano ceramic structure are 8.2, 25.5 and 44.9 mmAq at the face velocity of 2.0, 5.9 and 8.8 cm/s, respectively. Also the water vapor permeability is $3.6g/m^2{\cdot}h{\cdot}mmHg$. In this research, the porous nano ceramic structures are obtained and the possibility for the usage of a material for HEPA type breathing wall can be obtained.

A Study on Zero Energy House Model of Housing Complex (주택 단지 제로 에너지 하우스 모델에 관한 연구)

  • Huh, Myung Hoi;Shin, shung jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.121-126
    • /
    • 2020
  • In many parts of the world, climate warming has caused tremendous environmental disasters to repeat every year. Overuse of fossil fuels, the main source of energy, has affected the global environment, destroying the global ecosystem and depleting resources. To overcome this, efforts to reduce carbon emissions through the development of renewable energy are being actively studied at home and abroad. Already, new technologies are being reported abroad to reduce carbon emissions. Zero Energy House is a model that reduces low carbon emissions and energy use due to the use of high-density materials for high-heated materials, and can live in real life by receiving the minimum required energy through renewable energy. Although the government is trying to apply this in Korea, it is difficult to become common because of the lack of economic feasibility. The purpose of this study is to study models that can zero carbon emissions, which are eco-friendly elements, secure construction economy of zero energy house by using ventilation system, heat exchanger and energy storage system for public use, and attach automation system to window opening/closing to maintain indoor temperature.

A Study on CNN based Production Yield Prediction Algorithm for Increasing Process Efficiency of Biogas Plant

  • Shin, Jaekwon;Kim, Jintae;Lee, Beomhee;Lee, Junghoon;Lee, Jisung;Jeong, Seongyeob;Chang, Soonwoong
    • International journal of advanced smart convergence
    • /
    • v.7 no.1
    • /
    • pp.42-47
    • /
    • 2018
  • Recently, as the demand for limited resources continues to rise and problems of resource depletion rise worldwide, the importance of renewable energy is gradually increasing. In order to solve these problems, various methods such as energy conservation and alternative energy development have been suggested, and biogas, which can utilize the gas produced from biomass as fuel, is also receiving attention as the next generation of innovative renewable energy. New and renewable energy using biogas is an energy production method that is expected to be possible in large scale because it can supply energy with high efficiency in compliance with energy supply method of recycling conventional resources. In order to more efficiently produce and manage these biogas, a biogas plant has emerged. In recent years, a large number of biogas plants have been installed and operated in various locations. Organic wastes corresponding to biogas production resources in a biogas plant exist in a wide variety of types, and each of the incoming raw materials is processed in different processes. Because such a process is required, the case where the biogas plant process is inefficiently operated is continuously occurring, and the economic cost consumed for the operation of the biogas production relative to the generated biogas production is further increased. In order to solve such problems, various attempts such as process analysis and feedback based on the feedstock have been continued but it is a passive method and very limited to operate a medium/large scale biogas plant. In this paper, we propose "CNN-based production yield prediction algorithm for increasing process efficiency of biogas plant" for efficient operation of biogas plant process. Based on CNN-based production yield forecasting, which is one of the deep-leaning technologies, it enables mechanical analysis of the process operation process and provides a solution for optimal process operation due to process-related accumulated data analyzed by the automated process.

Design and Implementation of Web Environmental Sensor Data System based on Flex (Flex기반 웹 환경 센서 데이터 시스템 설계 및 구현)

  • Han, JaeJeong;Ryu, NamHoon;Oh, KyeongSug;Kim, EungKon;Jang, MoonSuk
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.560-563
    • /
    • 2008
  • The early web technology was 2D type and exchange of information was passive generally. AS the time had passed, users wanted to participate in the 3D environment which is similar to real world actively. However VRML which is expected to bring big changes of the web environment has not been expanded owing to various circumstances. At a recent Web 2.0 is the most popular topic in the Internet business. Basic concept of Web 2.0 is implementation of comfortable UI(User Interface) and implementation of more active web than previous web. Concept of RIA(Rich Internet Application) is one of the Web 2.0 important technologies. In this paper, we designed and implemented Web Environmental Sensor Data System which has fantastic UI and various functions by using Flex.

  • PDF

Design of Parallel Migration Method of Mobile Agents Using an Object Replication (객체 복제를 통한 이동 에이전트의 병렬 이주 방식 설계)

  • Kim, Kwang-Jong;Lee, Yon-Sik
    • The KIPS Transactions:PartD
    • /
    • v.11D no.2
    • /
    • pp.351-360
    • /
    • 2004
  • Most mobile agents are migrated to many mobile agent systems by the sequential node migration method. However. in this case, if some problems such as host's fault or obstacle etc. happened, mobile agent falls infinity walt or orphan states. Therefore, it is difficult to get an expectation effect as use of other distribution technologies because the required time for networking between nodes increases. And so, many researches have been performed to solve this problems. However, most of methods decide node migration based on passive routing table or detour hosts which have some problems. Actually, the researches for reducing the total required time for networking are insufficient yet. In this paper, to reduce the required time for networking of mobile agent we design an active routing table based on the information of implemented objects which are registered in the meta-table of naming agent. And also, for user's keyword, we propose an replication model that replicates many agent object according to the information and number of object references corresponding to meta-table. Replicated objects are migrated to mobile agent systems in parallel and it provides minimized required time for networking.

CONCEPTUAL DESIGN OF THE SODIUM-COOLED FAST REACTOR KALIMER-600

  • Hahn, Do-Hee;Kim, Yeong-Il;Lee, Chan-Bock;Kim, Seong-O;Lee, Jae-Han;Lee, Yong-Bum;Kim, Byung-Ho;Jeong, Hae-Yong
    • Nuclear Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.193-206
    • /
    • 2007
  • The Korea Atomic Energy Research Institute has developed an advanced fast reactor concept, KALIMER-600, which satisfies the Generation IV reactor design goals of sustainability, economics, safety, and proliferation resistance. The concept enables an efficient utilization of uranium resources and a reduction of the radioactive waste. The core design has been developed with a strong emphasis on proliferation resistance by adopting a single enrichment fuel without blanket assemblies. In addition, a passive residual heat removal system, shortened intermediate heat-transport system piping and seismic isolation have been realized in the reactor system design as enhancements to its safety and economics. The inherent safety characteristics of the KALIMER-600 design have been confirmed by a safety analysis of its bounding events. Research on important thermal-hydraulic phenomena and sensing technologies were performed to support the design study. The integrity of the reactor head against creep fatigue was confirmed using a CFD method, and a model for density-wave instability in a helical-coiled steam generator was developed. Gas entrainment on an agitating pool surface was investigated and an experimental correlation on a critical entrainment condition was obtained. An experimental study on sodium-water reactions was also performed to validate the developed SELPSTA code, which predicts the data accurately. An acoustic leak detection method utilizing a neural network and signal processing units were developed and applied successfully for the detection of a signal up to a noise level of -20 dB. Waveguide sensor visualization technology is being developed to inspect the reactor internals and fuel subassemblies. These research and developmental efforts contribute significantly to enhance the safety, economics, and efficiency of the KALIMER-600 design concept.

A Study on Use of Calculators in the Elementary Math Textbook of U.S. (미국 초등수학교과서의 계산기 활용 실태와 방안에 대한 분석)

  • Ryu, Sung-Rim
    • Communications of Mathematical Education
    • /
    • v.24 no.1
    • /
    • pp.1-27
    • /
    • 2010
  • This study intends to provide implications about sluggish use of calculators in our case by analyzing the math textbook of U.S. Macmillan/McGraw-Hill along with the tendency of paying more attention to math class using technologies. From the results of analysis, this textbook deals with various methods over around 3.3% of all pages, using calculators across all grades from 1st to 6th grade. In particular, it offers guidance into three types such as 'Choose a Computation Method', 'You can also use a calculator.', and 'TECHNOLOGY LINK', while particularly it is impressive in the perspective of using calculators as one of calculation strategies. And case studies of usage in textbooks describe 8 different perspectives as an example-represent; solve problems or equations; develope or demonstrate conceptual understanding; analyze; compute or estimate; describe, explain or justify; choose appropriate calculation method; determine a calculated answer's reasonableness. Reflecting on the fact that we still use calculators in a passive way, there are considerable implications to us.

Theoretical approach on the heating and cooling system design for an effective operation of Li-ion batteries for electric vehicles (전기구동 자동차용 리튬이온 배터리의 고효율 운전을 위한 냉방 및 난방 시스템 설계에 대한 이론적 접근법)

  • Kim, Dae-Wan;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2545-2552
    • /
    • 2014
  • This study is aiming to suggest the effective thermal management system design technologies for the high voltage and capacity battery system of the electricity driven vehicles and introduce the theoretical designing methods. In order to investigate the effective operation of the battery system for the electricity driven vehicles, the heat generation model for Li-ion battery system using the chemical reaction while charging and discharging was suggested and the thermal loads of the heat sources (air or liquid) for cooling and heating were calculated using energy balance. Especially, the design methods for the cooling and heating of the battery system for maintaining the optimum operation temperature were investigated under heating, cooling and generated heat (during charging and discharging) conditions. The battery thermal management system for the effective battery operation of the electricity driven vehicles was suggested reasonably depending on the variation of the season and operation conditions. In addition, at the same conditions under summer season, the cooling method using the liquid and active cooling technique showed a relatively high capacity, while cooling method using the passive cooling technique showed a relatively low capacity.

A wireless guided wave excitation technique based on laser and optoelectronics

  • Park, Hyun-Jun;Sohn, Hoon;Yun, Chung-Bang;Chung, Joseph;Kwon, Il-Bum
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.749-765
    • /
    • 2010
  • There are on-going efforts to utilize guided waves for structural damage detection. Active sensing devices such as lead zirconate titanate (PZT) have been widely used for guided wave generation and sensing. In addition, there has been increasing interest in adopting wireless sensing to structural health monitoring (SHM) applications. One of major challenges in wireless SHM is to secure power necessary to operate the wireless sensors. However, because active sensing devices demand relatively high electric power compared to conventional passive sensors such as accelerometers and strain gauges, existing battery technologies may not be suitable for long-term operation of the active sensing devices. To tackle this problem, a new wireless power transmission paradigm has been developed in this study. The proposed technique wirelessly transmits power necessary for PZT-based guided wave generation using laser and optoelectronic devices. First, a desired waveform is generated and the intensity of the laser source is modulated accordingly using an electro-optic modulator (EOM). Next, the modulated laser is wirelessly transmitted to a photodiode connected to a PZT. Then, the photodiode converts the transmitted light into an electric signal and excites the PZT to generate guided waves on the structure where the PZT is attached to. Finally, the corresponding response from the sensing PZT is measured. The feasibility of the proposed method for wireless guided wave generation has been experimentally demonstrated.

Transient Electronics and Biodegradable Encapsulation Technologies (트랜지언트 전자소자 및 생분해성 봉지막 기술)

  • Moon, Joon Min;Kang, Seung-Kyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.13-28
    • /
    • 2021
  • Since transient electronic devices can operate under harsh conditions such as electrolytic solutions or inside the body, and be removed by hydrolysis after operation, they can replace conventional electronic devices in various research areas like biomedical implantable devices. Moreover, transient electronic devices that can dissolve in water and enzymes are the focus of the new concept of green technology, which can solve electrical waste issues. However, the surroundings of transient electronic devices can deteriorate internal device components. Thus, an encapsulation strategy is introduced for stable operation in solution by shielding the outside of a device with a passive barrier. This article summarizes recent research trends in transient electronic devices, including their background, dissolution behavior, and encapsulation strategies to enhance reliability by blocking water permeation.