• Title/Summary/Keyword: Passive Mechanism

Search Result 344, Processing Time 0.026 seconds

Verification of Launch Vibration and Shock Isolation Performance for Spaceborne Compressor Vibration Isolator with SMA Mesh Washer (형상기억합금 메쉬 와셔를 이용한 우주용 냉각기 진동절연기의 발사 진동 및 충격 저감 성능검증)

  • Lee, Myeong-Jae;Han, Je-Heon;Oh, Hyun-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.517-524
    • /
    • 2014
  • Micro-vibration induced by on-board equipments such as fly-wheel and cryogenic cooler with mechanical moving parts affects the image quality of high-resolution observation satellite. Micro-vibration isolation system has been widely used for enhancing the pointing performance of observation satellites. In general, the micro-vibration isolation system requires a launch locking mechanism additionally to guarantee the structural safety of mission payloads supported by the isolation system with low stiffness under launch environment. In this study, we propose a passive launch and on-orbit vibration isolation system using shape memory alloy mesh washers for the micro-vibration isolation of spaceborne compressor, which does not require the additional launch locking mechanism. The basic characteristics of the isolator were measured in static and free vibration tests of the isolator, and a simple equivalent model of the isolator was proposed. The effectiveness of the isolator design in a launch environment was demonstrated through sine vibration, random vibration and shock tests.

Holding Mechanism of Anchor System for Fisheries Facilities (계류기초의 파주력 산정에 관한 연구)

  • Jung, Jin-Ho;Ryu, Cheong-Ro;Kim, Jong-Gyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.2
    • /
    • pp.132-147
    • /
    • 1996
  • The optimal design of floating type fisheries facilities in the open sea is demanded considering with the severe hydrodynamic forces on floating body, mooring tension and holding force of anchor. For conserving the facilities in most effective state, design and selection of anchor system is one of the most important fundamental subject. To enhance the design procedure of anchor system the holding forces of anchor are investigated by the hydraulic model test and are compared with the typical conventional results for various anchors. Applicability of previous estimation methods of holding force are checked and holding mechanism of anchor is discussed. Using the results a new computational concept of holding force is suggested considering mainly the effects of passive soil pressure (resistance), steady soil pressure, and surface friction etc. The new estimation method is proved as a feasible one by comparing the results of hydraulic model experiments. Applicability of various anchors to the anchor system on open sea fisheries structures is comprehensively reviewed using the present model tests and previous study results in the viewpoint of economy, construction and stability etc. Using the results, fundamental anchoring system design procedures are suggested to apply huge marine ranching complex with increase of the holding capacity of anchor under the optimum cost.

  • PDF

Design and Verification of the Hardware Architecture for the Active Seat Belt Control System Compliant to ISO 26262 (ISO 26262에 부합한 능동형 안전벨트 제어 시스템의 하드웨어 아키텍처 설계 및 검증)

  • Lee, Jun Hyok;Koag, Hyun Chul;Lee, Kyung-Jung;Ahn, Hyun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2030-2036
    • /
    • 2016
  • This paper presents a hardware development procedure of the ASB(Active Seat Belt) control system to comply with ISO 26262. The ASIL(Automotive Safety Integrity Level) of an ASB system is determined through the HARA(Hazard Analysis and Risk Assessment) and the safety mechanism is applied to meet the reqired ASIL. The hardware architecture of the controller consists of a microcontroller, H-bridge circuits, passive components, and current sensors which are used for the input comparison. The required ASIL for the control systems is shown to be satisfied with the safety mechanism by calculation of the SPFM(Single Point Fault Metric) and the LFM(Latent Fault Metric) for the design circuits.

Numerical simulation on the cyclic behavior of ultra-high performance concrete filled steel tubular column

  • Heng Cai;Fangqian Deng
    • Structural Engineering and Mechanics
    • /
    • v.85 no.5
    • /
    • pp.693-707
    • /
    • 2023
  • In order to deeply reveal the working mechanism of ultra-high performance concrete (UHPC) filled steel tubular columns (UHPCFSTs) under cyclic loading, a three-dimension (3D) macro-mesoscale finite element (FE) model was established considering the randomness of steel fibers and the damage of UHPC. Model correctness and reliability were verified based on the experimental results. Next, the whole failure process of UHPC reinforced with steel fibers, passive confinement effect and internal force distribution laws were comprehensively analyzed and discussed. Finally, a simplified and practical method was proposed for predicting the ultimate bending strengths of UHPCFSTs. It was found that the non-uniform confinement effect of steel tube occurred when the drift ratio exceeded 0.5%, while the confining stress increased then decreased afterwards. There was preferable synergy between the steel tube and UHPC until failure. Compared with experimental results, the ultimate bending strengths of UHPCFSTs were undervalued by the current code provisions such as AISC360-10, EC4 and GB50936 with computed mean values (MVs) of 0.855, 0.880 and 0.836, respectively. The proposed practical method was highly accurate, as evidenced by a mean value of 1.058.

Load Balancing Mechanisms for Foreign Agents in Hierarchical Mobile IPv4 Networks (계층적 MIPv4 네트워크에서의 외부 에이전트 부하 분산 방안)

  • Byun Haesun;Lee Meejeong
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.2
    • /
    • pp.167-179
    • /
    • 2005
  • In hierarchical Mobile IPv4 Networks the highest FA(Foreign Agent) may experience serious congestion and delay since the highest FA plays a role of CoA(Care of Address) for all mobile nodes in the domain, In this paper, we propose mechanism called 'HRFA(Hierarchical Root Foreign Agent)', which distributes the load imposed on the highest FA. In the proposed HRFA scheme, multiple HRFAs are selected to provide the similar service that is provided by the highest FA. According to which entity determines HRFAs, HRFA scheme is categorized into 'Active' and 'Passive' approaches. HRFA scheme is further categorized into 'All MN(Mobile Node)s' and 'New MNs' approaches, depending on which mobile nodes are assigned to a newly elected HRFA. Through a course of simulations, we investigate the performance of 4 possible combinations of HRFA schemes. We also compare the performance of the proposed HRFA schemes with the LMSP(Local Multicast Service Provider) scheme, which is a scheme to distribute the load of FA for multicast service in hierarchical wireless network domain. The simulation results show that the Passive & New MN approach performs best with respect to both the overhead and the load balancing.

Muscle Eccentric Control in Gait Initiation (보행 시작 시 원심성 근육 수축 조절)

  • Kim, Hyeong-Dong
    • Physical Therapy Korea
    • /
    • v.8 no.4
    • /
    • pp.81-89
    • /
    • 2001
  • There are two independent mechanisms to control the segmental reflex gain in humans during gait. They are presynaptic inhibition and homosynaptic depression. Through the mechanism of the presynaptic inhibition, the muscle spindle afferent feedback can be properly gated during eccentric phase of gait. The modulation of the presynaptic inhibition is reflected in the level of H-reflex at a constant EMG level. During the eccentric muscle activation presynaptic inhibition should increase to account for the lower amplitude level of H-reflex at a constant level of EMG. Homosynaptic depression is another mechanism responsible for regulating the effectiveness of the muscle spindle afferent feedback. Both the presynaptic inhibition and the monosynaptic depression are responsible for modulating reflex gain during gait initiation. Reflex modulation is influenced not only as a passive consequence of the alpha motor neuron excitation level, but also through supraspinal mechanisms. Spastic paretic patients show the impaired soleus H-reflex modulation either during the initial stance phase, or during the swing phase. This abnormal modulatory mechanism can partially and artificially be restored by the application of peripheral stimulus to the sole of the foot, provided that the segmental circuitry remains functional.

  • PDF

Active Authentication Method using NFC (NFC를 활용한 능동형 인증 방법)

  • Lee, Min-Gu;Kim, Dong-Wan;Sohn, Jin-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2C
    • /
    • pp.140-156
    • /
    • 2012
  • Since most of recently launched smart devices support NFC(Near Field Communication), RFID applications are tend to be replaced. For instance, previous RFID application areas such as entrance control, mobile e-ticket, electronic payment and et. al are subject to change using NFC. Due to the limitation of passive communication in RFID, it is impossible to cover all security requirements of authentication and authorization mechanism that wide areas of applications demand. Therefore authentication and authorization mechanism based on NFC is very attractive to such applications because active communication methods make it possible to be highly secure in authentication and authorization. In this paper, authors propose a new approach of secure authentication and authorization mechanism using NFC smart devices based on EAP(Extensible Authentication Protocol) and AAA(Authentication, Authorization and Accounting) protocols.

Design and Realization. of the Dual-mode Channel Filter and Group-Delay-and-Amplitude Equalizer for the Ka-band Satellite Transponder Subsystem

  • Sungtek Kahng;Uhm, Man-Seok;Lee, Seong-Pal
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.2
    • /
    • pp.140-146
    • /
    • 2003
  • In this paper, the design of a channel filter and its group-delay-and-amplitude equalizer is carried out for the Ka-band satellite transponder subsystem. The 8th order dual-mode filter is employed for high selectivity around the band-edges with an elliptic-integral function response and has an in-line configuration. The 2-pole, reflection-type, group-delay equalizer is designed and manufactured to reduce the group-delay and amplitude variation, which can be large for such a high order filter. It is noted that in both the filter and equalizer, adopting the dual-mode coupling mechanism leads to less mass and volume. Through measurement, the performance of the realized group-delay-equalized filter is shown to meet the equipment requirements and to be appropriate for the satellite input multiplexer.

Vibration Control of an Axially Moving String: Inclusion of the Dynamics of Electro Hydraulic Servo System

  • Kim, Chang-Won;Hong, Keum-Shik;Kim, Yong-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.342-347
    • /
    • 2003
  • In this paper, an active vibration control of a translating tensioned string with the use of an electro-hydraulic servo mechanism at the right boundary is investigated. The dynamics of the moving strip is modeled as a string with tension by using Hamilton’s principle for the systems with changing mass. The control objective is to suppress the transverse vibrations of the strip via boundary control. A right boundary control law in the form of current input to the servo valve based upon the Lyapunov’s second method is derived. It is revealed that a time-varying boundary force and a suitable passive damping at the right boundary can successfully suppress the transverse vibrations. The exponential stability of the closed loop system is proved. The effectiveness of the control laws proposed is demonstrated via simulations.

  • PDF

Experimental investigation on hysteretic behavior of rotational friction dampers with new friction materials

  • Anoushehei, Majid;Daneshjoo, Farhad;Mahboubi, Shima;Khazaeli, Sajjad
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.239-248
    • /
    • 2017
  • Friction dampers are displacement dependent energy dissipation devices which dissipate earthquake energy through friction mechanism and widely used in improving the seismic behavior of new structures and rehabilitation of existing structures. In this paper, the cyclic behavior of a friction damper with different friction materials is investigated through experimental tests under cyclic loading. The damper is made of steel plates, friction pads, preloaded bolts and hard washers. The paper aims at investigating the hysteretic behavior of three friction materials under cyclic loading to be utilized in friction damper. The tested friction materials are: powder lining, super lining and metal lining. The experimental results are studied according to FEMA-356 acceptance criteria and the most appropriate friction material is selected by comparing all friction materials results.