DOI QR코드

DOI QR Code

Numerical simulation on the cyclic behavior of ultra-high performance concrete filled steel tubular column

  • Heng Cai (School of Civil Engineering, Hubei Polytechnic University) ;
  • Fangqian Deng (School of Civil Engineering, Wuhan University)
  • Received : 2022.12.28
  • Accepted : 2023.02.16
  • Published : 2023.03.10

Abstract

In order to deeply reveal the working mechanism of ultra-high performance concrete (UHPC) filled steel tubular columns (UHPCFSTs) under cyclic loading, a three-dimension (3D) macro-mesoscale finite element (FE) model was established considering the randomness of steel fibers and the damage of UHPC. Model correctness and reliability were verified based on the experimental results. Next, the whole failure process of UHPC reinforced with steel fibers, passive confinement effect and internal force distribution laws were comprehensively analyzed and discussed. Finally, a simplified and practical method was proposed for predicting the ultimate bending strengths of UHPCFSTs. It was found that the non-uniform confinement effect of steel tube occurred when the drift ratio exceeded 0.5%, while the confining stress increased then decreased afterwards. There was preferable synergy between the steel tube and UHPC until failure. Compared with experimental results, the ultimate bending strengths of UHPCFSTs were undervalued by the current code provisions such as AISC360-10, EC4 and GB50936 with computed mean values (MVs) of 0.855, 0.880 and 0.836, respectively. The proposed practical method was highly accurate, as evidenced by a mean value of 1.058.

Keywords

Acknowledgement

The authors are grateful for the Key Program of National Natural Science Foundation of China (Grant Nos. 51738011).

References

  1. AISC360-10 (2010), Specification for Structural Steel Buildings, American Institute of Steel Construction, USA.
  2. Al-Ahmed, A.H.A., Al-Rumaithi, A., Allawi, A.A. and El-Zohairy, A. (2022), "Mesoscale analysis of Fiber-Reinforced concrete beams", Eng. Struct., 266, 114575. https://doi.org/10.1016/j.engstruct.2022.114575.
  3. Bazant, Z.P. and Becq-Giraudon, E. (2002), "Statistical prediction of fracture parameters of concrete and implications for choice of testing standard", Cement Concrete Res., 32(4), 529-556. https://doi.org/10.1016/S0008-8846(01)00723-2.
  4. Birtel, V. and Mark, P. (2006), "Parameterised finite element modelling of RC beam shear failure", ABAQUS Users' Conference, 95-108.
  5. Cai, H. (2022), "Seismic behavior and hysteretic model research on the ultra-high performance concrete filled rectangular steel tube columns", Ph.D. Dissertation, School of Civil Engineering, Wuhan University, China.
  6. Cai, H. and Yan, Y.X. (2022), "UHPC-filled rectangular steel tubular beam-column: numerical study and design", Build., 12, 1882. https://doi.org/10.3390/buildings12111882.
  7. Cai, H., Xu, L., Chi, Y., Yan, Y., Yu, C. and He, C. (2021), "Seismic performance of rectangular ultra-high performance concrete filled steel tube (UHPCFST) columns", Compos. Struct., 259, 113242. https://doi.org/10.1016/j.compstruct.2020.113242.
  8. Chen, S.M., Zhang, R. and Jia, L.J. (2018), "Structural behavior of UHPC filled steel tube columns under axial loading", Thin Wall. Struct., 130, 550-563. https://doi.org/10.1016/j.tws.2018.06.016.
  9. Congro, M., Roehl, D. and Mejia, C. (2021), "Mesoscale computational modeling of the mechanical behavior of cement composite materials", Compos. Struct., 257, 113137. https://doi.org/10.1016/j.compstruct.2020.113137.
  10. Ding, J.M., Wu, H.L. and Zhao, X. (2014), "Current situation and discussion of structural design for super high-rise buildings above 250 m in China", J. Build. Struct., 35(3), 1-7. (in Chinese)
  11. EC4 (2004), Design of Composite Steel and Concrete Structures, European Committee for Standardization, Belgium.
  12. Feng, T., Jia, M., Xu, W., Wang, F., Li, P., Wang, X., ... & Jiang, J. (2022), "Three-dimensional mesoscopic investigation of the compression mechanical properties of ultra-high performance concrete containing coarse aggregates", Cement Concrete Compos., 133, 104678. https://doi.org/10.1016/j.cemconcomp.2022.104678.
  13. GB50936 (2014), Technical Code for Concrete Filled Steel Tubular Structures, Ministry of Housing and Urban-Rural Development, People's Republic of China, China. (in Chinese)
  14. Han, L.H. (2016), Concrete Filled Steel Tubular Structures: from Theory to Practices, Science Press, Beijing, China.
  15. Hannawi, K., Bian, H., Prince-Agbodjan, W. and Raghavan, B. (2016), "Effect of different types of fibers on the microstructure and the mechanical behavior of ultra-high performance fiber-reinforced concretes", Compos. Part B Eng., 86, 214-220. https://doi.org/10.1016/j.compositesb.2015.09.059.
  16. Huang, Z., Uy, B., Li, D. and Wang, J. (2020), "Behavior and design of ultra-high-strength CFST members subjected to compression and bending", J. Constr. Steel Res., 175, 106351. https://doi.org/10.1016/j.jcsr.2020.106351.
  17. Kadhim, M.M. A., Jawdhari, A. and Peiris, A. (2021), "Development of hybrid UHPC-NC beams: A numerical study", Eng. Struct., 233, 111893. https://doi.org/10.1016/j.engstruct.2021.111893.
  18. Le Hoang, A., Fehling, E., Lai, B., Thai, D.K. and Van Chau, N. (2019), "Experimental study on structural performance of UHPC and UHPFRC columns confined with steel tube", Eng. Struct., 187, 457-477. https://doi.org/10.1016/j.engstruct.2019.02.063.
  19. Lee, J. and Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., ASCE, 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892).
  20. Liang, X.W. and Wu, C.Q. (2018), "Meso-scale modelling of steel fibre reinforced concrete with high strength", Constr. Build. Mater., 165, 187-198. https://doi.org/10.1016/j.conbuildmat.2018.01.028.
  21. Liu, J., Wen-xuan, Y.U., Xiu-li, D.U., Shuai, Z.H.A.N.G., Wangxian, Y.A.N.G. and Dong, L.I. (2019), "Research on size effect of dynamic compressive strength of concrete based on mesoscale simulation", Eng. Mech., 36 (11), 50-61. (in Chinese) https://doi.org/10.6052/j.issn.1000-4750.2018.06.0363.
  22. Lu, Q.R. (2020), "Research on the constitutive relationship of steel tube confined ultra-high performance concrete containing hybrid fiber", Ph.D. Dissertation, School of Civil Engineering, Wuhan University, China.
  23. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plasticdamage model for concrete", Int. J. Solid. Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4.
  24. Luo, Y., Zhao, Y., Chen, Y., Lin, X. and Yan, J. (2022), "Experimental studies on seismic performance of UHPSFRCfilled square steel tubular columns", Build., 12, 798. https://doi.org/10.3390/buildings12060798.
  25. Man, X.U., Bin, Z.E.N.G., Hong, Q.I.A.O., Qing, X.U., Wei-wei, G.U.O. and He, X.I.A. (2021), "Nonlinear dynamic response analysis of wind-train-bridge coupling system of Hu-Su-Tong bridge", Eng. Mech., 38(10), 83-89. (in Chinese) https://doi.org/10.6052/j.issn.1000-4750.2020.09.0679.
  26. Naderi, S. and Zhang, M.Z. (2022), "3D meso-scale modelling of tensile and compressive fracture behavior of steel fibre reinforced concrete", Compos. Struct., 291, 115690. https://doi.org/10.1016/j.compstruct.2022.115690.
  27. Naderi, S. and Zhang, M.Z. (2020), "A novel framework for modelling the 3D mesostructure of steel fibre reinforced concrete", Comput. Struct., 234, 106251. https://doi.org/10.1016/j.compstruc.2020.106251.
  28. Qi, J., Wu, Z., Ma, Z.J. and Wang, J. (2018), "Pullout behavior of straight and hooked-end steel fibers in UHPC matrix with various embedded angles", Constr. Build. Mater., 191, 764-774. https://doi.org/10.1016/j.conbuildmat.2018.10.067.
  29. Sun, Y., Yu, R., Wang, S., Zhou, Y., Zeng, M., Hu, F., ... & Ma, S. (2021), "Development of a novel eco-efficient LC2 conceptual cement based ultra-high performance concrete (UHPC) incorporating limestone powder and calcined clay tailings: Design and performances", J. Clean. Prod., 315, 128236. https://doi.org/10.1016/j.jclepro.2021.128236.
  30. Tao, Z., Wang, Z.B. and Yu, Q. (2013), "Finite element modelling of concrete-filled steel stub columns under axial compression", J. Constr. Steel Res., 89, 121-131. https://doi.org/10.1016/j.jcsr.2013.07.001.
  31. Wang, Q., Liang, L., Lui, E.M. and Shi, Q. (2022), "Behavior of eccentrically loaded UHPC filled circular steel tubular short columns", J. Constr. Steel Res., 193, 107282. https://doi.org/10.1016/j.jcsr.2022.107282.
  32. Xu, M.L., Li, G., Li, W., Zhang, T., Zhang, W. and Bai, F. (2022), "Analysis of longitudinal force degradation and operation safety of heavy-haul combined trains", J. Railw. Sci. Eng., 20(1), 321-332. (in Chinese) https://doi.org/10.19713/j.cnki.43- 1423/u.t20220260.
  33. Xu, L., Lu, Q., Chi, Y., Yang, Y., Yu, M. and Yan, Y. (2019b), "Axial compressive performance of UHPC filled steel tube stub columns containing steel-polypropylene hybrid fiber", Constr. Build. Mater., 204, 754-767. https://doi.org/10.1016/j.conbuildmat.2019.01.202.
  34. Xu, L., Wu, F., Chi, Y., Cheng, P., Zeng, Y. and Chen, Q. (2019a), "Effects of coarse aggregate and steel fibre contents on mechanical properties of high performance concrete", Constr. Build. Mater., 206, 97-110. https://doi.org/10.1016/j.conbuildmat.2019.01.190.
  35. Xu, S., Wu, C., Liu, Z. and Li, J. (2018), "Numerical study of ultra-high-performance steel fibre-reinforced concrete columns under monotonic push loading", Adv. Struct. Eng., 21(8), 1234-1248. https://doi.org/10.1177/1369433217747710.
  36. Xu, S., Wu, C., Liu, Z. and Shao, R. (2019), "Experimental investigation on the cyclic behaviors of ultra-high performance steel fiber reinforced concrete filled thin-walled steel tubular columns", Thin Wall. Struct., 140, 1-20. https://doi.org/10.1016/j.tws.2019.03.008.
  37. Yan, J.B., Chen, A.Z. and Zhu, J.S. (2021), "Behaviors of square UHPFRC-filled steel tubular stub columns under eccentric compression", Thin Wall. Struct., 159, 107222. https://doi.org/10.1016/j.tws.2020.107222.
  38. Yan, Y., Xu, L., Li, B., Chi, Y., Yu, M., Zhou, K. and Song, Y. (2019), "Axial behavior of ultra-high performance concrete (UHPC) filled stocky steel tubes with square sections", J. Constr. Steel Res., 158, 417-428. https://doi.org/10.1016/j.jcsr.2019.03.018.
  39. Zhang, R., Chen, S.M. and Gu, P. (2020), "Structural behavior of UHPC filled steel tubular columns under eccentric loading", Thin Wall. Struct., 156, 106959. https://doi.org/10.1016/j.tws.2020.106959.