• Title/Summary/Keyword: Passive Converter

Search Result 207, Processing Time 0.022 seconds

A UHF-band Passive Temperature Sensor Tag Chip Fabricated in $0.18-{\mu}m$ CMOS Process ($0.18-{\mu}m$ CMOS 공정으로 제작된 UHF 대역 수동형 온도 센서 태그 칩)

  • Pham, Duy-Dong;Hwang, Sang-Kyun;Chung, Jin-Yong;Lee, Jong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.45-52
    • /
    • 2008
  • We investigated the design of an RF-powered, wireless temperature sensor tag chip using $0.18-{\mu}m$ CMOS technology. The transponder generates its own power supply from small incident RF signal using Schottky diodes in voltage multiplier. Ambient temperature is measured using a new low-power temperature-to-voltage converter, and an 8-bit single-slope ADC converts the measured voltage to digital data. ASK demodulator and digital control are combined to identify unique transponder (ID) sent by base station for multi-transponder applications. The measurement of the temperature sensor tag chip showed a resolution of $0.64^{\circ}C/LSB$ in the range from $20^{\circ}C$ to $100^{\circ}C$, which is suitable for environmental temperature monitoring. The chip size is $1.1{\times}0.34mm^2$, and operates at clock frequency of 100 kHz while consuming $64{\mu}W$ power. The temperature sensor required a -11 dBm RF input power, supported a conversion rate of 12.5 k-samples/sec, and a maximum error of $0.5^{\circ}C$.

A Low-power EEPROM design for UHF RFID tag chip (UHF RFID 태그 칩용 저전력 EEPROM설계)

  • Yi, Won-Jae;Lee, Jae-Hyung;Park, Kyung-Hwan;Lee, Jung-Hwan;Lim, Gyu-Ho;Kang, Hyung-Geun;Ko, Bong-Jin;Park, Mu-Hun;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.486-495
    • /
    • 2006
  • In this paper, a low-power 1Kb synchronous EEPROM is designed with flash cells for passive UHF RFID tag chips. To make a low-power EEPROM, four techniques are newly proposed. Firstly, dual power supply voltages VDD(1.5V) and VDDP(2.5V), are used. Secondly, CKE signal is used to remove switching current due to clocking of synchronous circuits. Thirdly, a low-speed but low-power sensing scheme using clocked inverters is used instead of the conventional current sensing method. Lastly, the low-voltage, VDD for the reference voltage generator is supplied by using the Voltage-up converter in write cycle. An EEPROM is fabricated with the $0.25{\mu}m$ EEPROM process. Simulation results show that power dissipations are $4.25{\mu}W$ in the read cycle and $25{\mu}W$ in the write cycle, respectively. The layout area is $646.3\times657.68{\mu}m^2$.

Highly AC Voltage Fluctuation-Resistant LED Driver with Sinusoid-Like Reference

  • Ning, Ning;Tong, Zhenxiao;Yu, Dejun;Wu, Shuangyi;Chen, Wenbin;Feng, Chunyi
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.257-264
    • /
    • 2014
  • A novel converter-free AC LED driver that is highly resistant to the fluctuation of AC voltage is proposed in this study. By removing large passive components, such as the bulky capacitor and the large-value inductor, the integration of the driver circuit is enhanced while the driving current remains stable. The proposed circuit provides LED lamps with a driving current that can follow the sinusoid waveform to obtain a very high power factor (PF) and low total harmonic distortion (THD). The LED input current produced by this driving current is insensitive to fluctuations in the AC voltage. Users will thus not feel that LED lamps are flashing during the fluctuation. Experiment results indicate that the proposed system can obtain PF of 0.999 and THD as low as 3.3% for a five-string 6 W LED load under 220 V at 50 Hz.

The Feed-forward Controller and Notch Filter Design of Single-Phase Photovoltaic Power Conditioning System for Current Ripple Mitigation (단상 PVPCS 출력 전류의 리플 개선을 위한 노치 필터 및 피드 포워드 제어기 설계)

  • Kim, Seung-Min;Yang, Seung-Dae;Choi, Ju-Yeop;Choy, Ick;Lee, Young-Gwon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.325-330
    • /
    • 2012
  • A single-phase PVPCS(photovoltaic power conditioning system) that contains a single phase dc-ac inverter tends to draw an ac ripple current at twice the out frequency. Such a ripple current may shorten passive elements life span and worsen output current THD. As a result, it may reduce the efficiency of the whole PVPCS system. In this paper, the ripple current propagation is analyzed, and two methods to reduce the ripple current are proposed. Firslyt, this paper presents notch filter with IP voltage controller to reject specific current ripple in single-phase PVPCS. The notch filter can be designed that suppress just only specific frequency component and no phase delay. The proposed notch filter can suppress output command signal in the ripple bandwidth for reducing output current THD. Secondly, for reducing specific current ripple, the other method is feed-forward compensation to incorporate a current control loop in the dc-dc converter. The proposed notch filter and feed-forward compensation method have been verified with computer simulation and simulation results obtained demonstrate the validity of the proposed control scheme.

  • PDF

Automatic Tuning Architecture of RC Time-Constant due to the Variation of Integrated Passive Components (집적된 수동 소자 변동에 의한 RC 시상수 자동 보정 기법)

  • Lee, Sung-Dae;Hong, Kuk-Tae;Jang, Myung-Jun;Chung, Kang-Min
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.115-122
    • /
    • 1997
  • In this paper, on-chp atomatic tuning circuit, using proposed integration level approximation technique, is designed to tuning of the variation of RC time-constant due to aging or temperature variation, etc. This circuit reduces the error, the difference between code values and real outputs of integrator, which is drawback of presented dual-slope tuning circuit and eliminates modulations of processing signals in integrated circuit due to fixed tuning codes during ordinary operation. This system is made up of simple integrator, A/D converter and digital control circuit and all capacitors are replaced by programed capacitor arrays in this system. This tuning circuit with 4 bit resolution achieves $-9.74{\sim}+9.68%$ of RC time constant error for 50% resistance variation.

  • PDF

Zigbee Transmitter Using a Low-Power High-Gain Up-Conversion Mixer (저 전력 고 이득 주파수 상향변환기를 이용한 Zigbee 송신기 설계)

  • Baik, Seyoung;Seo, Changwon;Jin, Ho Jeong;Cho, Choon Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.9
    • /
    • pp.825-833
    • /
    • 2016
  • This paper introduces a direct-conversion CMOS RF transmitter for the IEEE 802.15.4 standard with a low-power high-gain up-conversion mixer designed in $0.18{\mu}m$ process. The designed RF DCT(Direct Conversion Transmitter) is composed of differential DAC(Digital to Analog Converter), passive low-pass filter, quadrature active mixer and drive amplifier. The most important characteristic in designing RF DCT is to satisfy the 2.4 GHz Zigbee standard in low power. The quadrature active mixer inside the proposed RF DCT provides enough high gain as well as sufficient linearity using a gain boosting technique. The measurement results for the proposed transmitter show very low power consumption of 7.8 mA, output power more than 0 dBm and ACPR (Adjacent Channel Power Ratio) of -30 dBc.

Design and Reliability Evaluation of 5-V output AC-DC Power Supply Module for Electronic Home Appliances (가전기기용 직류전원 모듈 설계 및 신뢰성 특성 해석)

  • Mo, Young-Sea;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.504-510
    • /
    • 2017
  • This paper presents an AC-DC power module design and evaluates its efficiency and reliability when used for electronics appliances. This power module consists of a PWM control IC, power MOSFETs, a transformer and several passive devices. The module was tested at an input voltage of 220V (RMS) (frequency 60 Hz). A test was conducted in order to evaluate the operation and power efficiency of the module, as well as the reliability of its protection functions, such as its over-current protection (OVP), overvoltage protection (OVP) and electromagnetic interference (EMI) properties. Especially, we evaluated the thermal shut-down protection (TSP) function in order to assure the operation of the module under high temperature conditions. The efficiency and reliability measurement results showed that at an output voltage of 5 V, the module had a ripple voltage of 200 mV, power efficiency of 73 % and maximum temperature of $80^{\circ}C$ and it had the ability to withstand a stimulus of high input voltage of 4.2 kV during 60 seconds.