• Title/Summary/Keyword: Passivation Material

Search Result 236, Processing Time 0.021 seconds

The Study of Evaluation Methods of Electrolyte for Li/SO2Cl2 Battery (Li/SO2Cl2 전지용 전해액의 평가 방법 연구)

  • Roh, Kwang Chul;Cho, Min-Young;Lee, Jae-Won;Park, Sun-Min;Ko, Young-Ok;Lee, Jeong-Do;Chung, Kwang-il;Shin, Dong-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.67-71
    • /
    • 2011
  • The cathodic active material of $Li/SO_2Cl_2$ battery is $SO_2Cl_2$, which is the solvent of an electrolyte. It is referred to as a catholyte, a compound word of cathode and electrolyte. As the battery discharges, the catholyte burns out. And thus, the characteristics of the $SO_2Cl_2$ in the battery determine the capacity. In addition, the transition minimum voltage (TMV) and the voltage delay deviation of $Li/SO_2Cl_2$ battery are due to the passivation film formed by the reaction between an electrolyte and Li. Impurities in the electrolyte, such as moisture or heavy metal ions, will accelerate the growth of the passivation film. Therefore, a technology must be established to purify an electrolyte and to ensure the effectiveness of the purification method. In this research, $LiAlCl_4/SO_2Cl_2$ was manufactured using $AlCl_3$ and LiCl. Its concentration, the amount of moisture, and the metal amount were evaluated using an ionic conductivity meter, a colorimeter, and FT-IR.

An Investigation of Electrical Properties in Cation-anion Codoped ZnO by Atomic Layer Deposition (원자층 증착법 기반 양이온-음이온 이중 도핑 효과에 따른 ZnO 박막의 전기적 특성 비교 연구)

  • Dong-eun Kim;Geonwoo Kim;Kyung-Mun Kang;Akendra Singh Chabungbam;Hyung-Ho Park
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.94-101
    • /
    • 2023
  • Zinc oxide(ZnO) is a semiconductor material with a bandgap of 3.37 eV and an exciton binding energy of 60 meV for various applications. Recently ZnO has been proven to enhance its electrical properties for utilization as an alternative for transparent conducting oxide (TCO) materials. In this study, cation(Al, Ga)-anion(F) single and double doped ZnO thin films were grown by atomic layer deposition (ALD) to enhance the electrical properties. The structural and optical properties of doped ZnO thin films were analyzed, and doping effects were confirmed to electrical characteristics. In single doped ZnO, it was observed that the carrier concentration was increased after doping, acting as a donor to ZnO. Among the single doping elements, F doped ZnO(FZO) showed the highest mobility and conductivity due to the passivation effect of oxygen vacancies. In the case of double doping, higher electrical characteristics were observed compared to single doping. Among the samples, Al-F doped ZnO(AFZO) exhibited the lowest resistance value. This results can be attributed to an increase in delocalized electron states and a decrease in lattice distortion resulting from the differences in ionic radius. The partial density of states(PDOS) was also analyzed and observed to be consistent with the experimental results.

GPU Based Feature Profile Simulation for Deep Contact Hole Etching in Fluorocarbon Plasma

  • Im, Yeon-Ho;Chang, Won-Seok;Choi, Kwang-Sung;Yu, Dong-Hun;Cho, Deog-Gyun;Yook, Yeong-Geun;Chun, Poo-Reum;Lee, Se-A;Kim, Jin-Tae;Kwon, Deuk-Chul;Yoon, Jung-Sik;Kim3, Dae-Woong;You, Shin-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.80-81
    • /
    • 2012
  • Recently, one of the critical issues in the etching processes of the nanoscale devices is to achieve ultra-high aspect ratio contact (UHARC) profile without anomalous behaviors such as sidewall bowing, and twisting profile. To achieve this goal, the fluorocarbon plasmas with major advantage of the sidewall passivation have been used commonly with numerous additives to obtain the ideal etch profiles. However, they still suffer from formidable challenges such as tight limits of sidewall bowing and controlling the randomly distorted features in nanoscale etching profile. Furthermore, the absence of the available plasma simulation tools has made it difficult to develop revolutionary technologies to overcome these process limitations, including novel plasma chemistries, and plasma sources. As an effort to address these issues, we performed a fluorocarbon surface kinetic modeling based on the experimental plasma diagnostic data for silicon dioxide etching process under inductively coupled C4F6/Ar/O2 plasmas. For this work, the SiO2 etch rates were investigated with bulk plasma diagnostics tools such as Langmuir probe, cutoff probe and Quadruple Mass Spectrometer (QMS). The surface chemistries of the etched samples were measured by X-ray Photoelectron Spectrometer. To measure plasma parameters, the self-cleaned RF Langmuir probe was used for polymer deposition environment on the probe tip and double-checked by the cutoff probe which was known to be a precise plasma diagnostic tool for the electron density measurement. In addition, neutral and ion fluxes from bulk plasma were monitored with appearance methods using QMS signal. Based on these experimental data, we proposed a phenomenological, and realistic two-layer surface reaction model of SiO2 etch process under the overlying polymer passivation layer, considering material balance of deposition and etching through steady-state fluorocarbon layer. The predicted surface reaction modeling results showed good agreement with the experimental data. With the above studies of plasma surface reaction, we have developed a 3D topography simulator using the multi-layer level set algorithm and new memory saving technique, which is suitable in 3D UHARC etch simulation. Ballistic transports of neutral and ion species inside feature profile was considered by deterministic and Monte Carlo methods, respectively. In case of ultra-high aspect ratio contact hole etching, it is already well-known that the huge computational burden is required for realistic consideration of these ballistic transports. To address this issue, the related computational codes were efficiently parallelized for GPU (Graphic Processing Unit) computing, so that the total computation time could be improved more than few hundred times compared to the serial version. Finally, the 3D topography simulator was integrated with ballistic transport module and etch reaction model. Realistic etch-profile simulations with consideration of the sidewall polymer passivation layer were demonstrated.

  • PDF

Effect of Austenitizing Ratio on the Delta Ferrite Volume Fraction and Corrosion Resistance of Shell Mold Cast SSC13 Elbow Fitting (셀 몰드 주조한 SSC13 엘보우 피팅 주강의 고용화율에 따른 델타 페라이트 분율 변화와 내부식특성)

  • Kim, Kuk-Jin;Lim, Su-Gun;Ju, Heong-kyu;Pak, Sung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.35 no.5
    • /
    • pp.109-113
    • /
    • 2015
  • In this study, the measurement of FN (ferrite volume fraction) and the solution annealing ratio at a temperature of $1130^{\circ}C$ were determined with 15A elbow fittings of shell cast SSC13, and the corrosion resistance with and without austenitizing solution annealing were investigated in comparison with AISI304. The delta ferrite phase was observed in the material due to the slow cooling effect of the shell mold casting. However, the delta ferrite phase decreased gradually with the solution annealing at a temperature of $1130^{\circ}C$. The hardness generally decreased with a heat treatment; however, its corrosion resistance was improved with the heat treatment. In addition, when a passivation treatment was applied, its corrosion ratio showed the lowest value. The pattern of general corrosion decreased due to the decrease in the delta ferrite phase with the solution annealing treatment. Consequently, it is suggested that the corrosion resistance of SSC13 elbow fittings can be improved by increasing the ratio of any solution annealing treatment used and by decreasing the ferrite phase. The relationship between the ratio of solution annealing and delta ferrite is expressed as follows: SA (solution annealing ratio,%) = 98 - FN (ferrite volume fraction, %).

A study on the characteristics of double insulating layer (HgCdTe MIS의 이중 절연막 특성에 관한 연구)

  • 정진원
    • Electrical & Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.463-469
    • /
    • 1996
  • The double insulating layer consisting of anodic oxide and ZnS was formed for HgCdTe metal insulator semiconductor(MIS) structure. ZnS was evaporated on the anodic oxide grown in H$_{2}$O$_{2}$ electrolyte. Recently, this insulating mechanism for HgCdTe MIS has been deeply studied for improving HgCdTe surface passivation. It was found through TEM observation that an interface layer is formed between ZnS and anodic oxide layers for the first time in the study of this area. EDS analysis of chemical compositions using by electron beam of 20.angs. in diameter and XPS depth composition profile indicated strongly that the new interface is composed of ZnO. Also TEM high resolution image showed that the structure of oxide layer has been changed from the amorphous state to the microsrystalline structure of 100.angs. in diameter after the evaporation of ZnS. The double insulating layer with the resistivity of 10$^{10}$ .ohm.cm was estimated to be proper insulating layer of HgCdTe MIS device. The optical reflectance of about 7% in the region of 5.mu.m showed anti-reflection effect of the insulating layer. The measured C-V curve showed the large shoft of flat band voltage due to the high density of fixed oxide charges about 1.2*10$^{12}$ /cm$^{2}$. The oxygen vacancies and possible cationic state of Zn in the anodic oxide layer are estimated to cause this high density of fixed oxide charges.

  • PDF

Study on the Characteristics of Crevice Corrosion for STS304 Austenitic Stainless Steel(I) (오스테나이트계 스테인리스강의 틈부식 특성에 관한연구(I))

  • 임우조
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.1
    • /
    • pp.66-72
    • /
    • 2000
  • In these days, with development of industry, the use of machines and structures like ships, airplanes, bridges, power plants, and structure for construction has increased and these machines and structures are used in various corrosive environment. Especially, in case of STS 304, which is material for every kind of machine and chemical plant, it makes many problems related with corrosion and as a result of this, there are happening tremendous economic loss. Therefor, in this study, the test for polarization characteristics was carried out to study characteristics of crevice corrosion of STS 304 which is austenitic stainless steel, in NaCl environment.The main results obtained are as follows :1) Part of crevice is corroded, neighboring outside surface of crevice is passivation. 2) In polarization behavior, corrosion potential of STS 304 become more noble as the concentration of NaCl solution increased by 3.5% but the concentration increased over 3.5% that of STS 3.4 become less noble. 3) The current density under corrosion potential was high drained as concentration of NaCl solution increased by 3.5% but the concentration increased over 3.5%, the current density was low drained.

  • PDF

Characteristics of Silicon Nanoparticles Depending on H2 Gas Flow During Nanoparticle Synthesis via CO2 Laser Pyrolysis (CO2 레이저 열분해법을 이용한 실리콘 나노입자 합성 시 H2 유량이 나노입자 특성에 미치는 영향)

  • Lee, Jae Hee;Kim, Seongbeom;Kim, Jongbok;Hwang, Taekseong;Lee, Jeong Chul
    • Korean Journal of Materials Research
    • /
    • v.23 no.5
    • /
    • pp.260-265
    • /
    • 2013
  • Silicon nanoparticle is a promising material for electronic devices, photovoltaics, and biological applications. Here, we synthesize silicon nanoparticles via $CO_2$ laser pyrolysis and study the hydrogen flow effects on the characteristics of silicon nanoparticles using high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and UV-Vis-NIR spectrophotometry. In $CO_2$ laser pyrolysis, used to synthesize the silicon nanoparticles, the wavelength of the $CO_2$ laser matches the absorption cross section of silane. Silane absorbs the $CO_2$ laser energy at a wavelength of $10.6{\mu}m$. Therefore, the laser excites silane, dissociating it to Si radical. Finally, nucleation and growth of the Si radicals generates various silicon nanoparticle. In addition, researchers can introduce hydrogen gas into silane to control the characteristics of silicon nanoparticles. Changing the hydrogen flow rate affects the nanoparticle size and crystallinity of silicon nanoparticles. Specifically, a high hydrogen flow rate produces small silicon nanoparticles and induces low crystallinity. We attribute these characteristics to the low density of the Si precursor, high hydrogen passivation probability on the surface of the silicon nanoparticles, and low reaction temperature during the synthesis.

Optical Characteristics of CdSe/ZnS Quantum Dot with Precursor Flow Rate Synthesized by using Microreactor (마이크로리액터를 이용한 전구체 유속에 따른 CdSe/ZnS 양자점의 광학특성)

  • Park, Ji Young;Jeong, Da-Woon;Ju, Won;Seo, Han Wook;Cho, Yong-Ho;Kim, Bum Sung
    • Journal of Powder Materials
    • /
    • v.23 no.2
    • /
    • pp.91-94
    • /
    • 2016
  • High-quality colloidal CdSe/ZnS (core/shell) is synthesized using a continuous microreactor. The particle size of the synthesized quantum dots (QDs) is a function of the precursor flow rate; as the precursor flow rate increases, the size of the QDs decreases and the band gap energy increases. The photoluminescence properties are found to depend strongly on the flow rate of the CdSe precursor owing to the change in the core size. In addition, a gradual shift in the maximum luminescent wave (${\lambda}_{max}$) to shorter wavelengths (blue shift) is found owing to the decrease in the QD size in accordance with the quantum confinement effect. The ZnS shell decreases the surface defect concentration of CdSe. It also lowers the thermal energy dissipation by increasing the concentration of recombination. Thus, a relatively high emission and quantum yield occur because of an increase in the optical energy emitted at equal concentration. In addition, the maximum quantum yield is derived for process conditions of 0.35 ml/min and is related to the optimum thickness of the shell material.

Role of a PVA layer During lithography of SnS2 thin Films Grown by Atomic layer Deposition

  • Ham, Giyul;Shin, Seokyoon;Lee, Juhyun;Lee, Namgue;Jeon, Hyeongtag
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.41-45
    • /
    • 2018
  • Two-dimensional (2D) materials have been studied extensively due to their excellent physical, chemical, and electrical properties. Among them, we report the material and device characteristics of tin disulfide ($SnS_2$). To apply $SnS_2$ as a channel layer in a transistor, $SnS_2$ channels were formed by a stripping method and a transfer method. The limitation of this method is that it is difficult to produce uniform device characteristics over a large area. Therefore, we directly deposited $SnS_2$ by atomic layer deposition (ALD) and then performed lithography. This method was able to produce devices with repeatable characteristics over a large area. However, the $SnS_2$ film was damaged by the acetone used as a photoresist (PR) developer during the lithography process, with the electrical properties of mobility of $2.6{\times}10^{-4}cm^2/Vs$, S.S. of 58.1 V/decade, and on/off current ratio of $1.8{\times}10^2$. These results are not suitable for advanced electronic devices. In this study, we analyzed the effect of acetone on $SnS_2$ and studied the device process to prevent such damage. Using polyvinyl alcohol (PVA) as a passivation layer during the lithography process, the electrical characteristics of the $SnS_2$ transistor had $2.11{\times}10^{-3}cm^2/Vs$ of mobility, 11.3 V/decade of S.S, and $2.5{\times}10^3$ of the on/off current ratio, which were 10x improvements to the $SnS_2$ transistor fabricated by the conventional method.

Buckling Formation on Steel-Based Solar Cell Induced by Silicone Resin Coat and Its Improvement on Performance Efficiency (실리콘 고분자 수지의 버클링을 통한 스틸기반 태양전지의 효율 향상)

  • Park, Young Jun;Oh, Kyeongseok
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.519-524
    • /
    • 2019
  • Even though stainless steel foil is not a highly efficient material for film-type solar cell, it has strong passivation capability without additional process. In this study, silicone resin was employed during a-Si:H thin film solar cell fabrication for the purpose of planarization and electrical insulation. In the first stage of process, silicone resin was coat onto the stainless steel (STS) using spin coater with thickness of $2{\sim}3{\mu}m$ and followed by aluminum deposition using ion beam application. Unexpectedly buckling was formed during aluminum deposition process. After subsequent fabrication processes, solar cell performance was evaluated. In voltage-current data, slight increase of cell performance was obtained and interpreted by the increase of light scattering.