Browse > Article
http://dx.doi.org/10.3740/MRSK.2013.23.5.260

Characteristics of Silicon Nanoparticles Depending on H2 Gas Flow During Nanoparticle Synthesis via CO2 Laser Pyrolysis  

Lee, Jae Hee (KIER-UNIST Advanced Center for Energy, Korea Institute of Energy Research (KIER))
Kim, Seongbeom (KIER-UNIST Advanced Center for Energy, Korea Institute of Energy Research (KIER))
Kim, Jongbok (KIER-UNIST Advanced Center for Energy, Korea Institute of Energy Research (KIER))
Hwang, Taekseong (Department of Chemical Engineering, Chungnam National University)
Lee, Jeong Chul (KIER-UNIST Advanced Center for Energy, Korea Institute of Energy Research (KIER))
Publication Information
Korean Journal of Materials Research / v.23, no.5, 2013 , pp. 260-265 More about this Journal
Abstract
Silicon nanoparticle is a promising material for electronic devices, photovoltaics, and biological applications. Here, we synthesize silicon nanoparticles via $CO_2$ laser pyrolysis and study the hydrogen flow effects on the characteristics of silicon nanoparticles using high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and UV-Vis-NIR spectrophotometry. In $CO_2$ laser pyrolysis, used to synthesize the silicon nanoparticles, the wavelength of the $CO_2$ laser matches the absorption cross section of silane. Silane absorbs the $CO_2$ laser energy at a wavelength of $10.6{\mu}m$. Therefore, the laser excites silane, dissociating it to Si radical. Finally, nucleation and growth of the Si radicals generates various silicon nanoparticle. In addition, researchers can introduce hydrogen gas into silane to control the characteristics of silicon nanoparticles. Changing the hydrogen flow rate affects the nanoparticle size and crystallinity of silicon nanoparticles. Specifically, a high hydrogen flow rate produces small silicon nanoparticles and induces low crystallinity. We attribute these characteristics to the low density of the Si precursor, high hydrogen passivation probability on the surface of the silicon nanoparticles, and low reaction temperature during the synthesis.
Keywords
silicon nanoparticle; hydrogen flow; laser pyrolysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. Li, Y. He, S. S. Talukdar and M. T. Swihart, Langmuir, 19, 8490 (2003).   DOI   ScienceOn
2 P. H. Hermans and A. Weidinger, Macromol. Chem. Phys., 44, 24 (1961).   DOI
3 J. Flint and J. Haggerty, Aerosol Sci. Tech., 13, 72 (1990).   DOI   ScienceOn
4 S. Ogut, J. R. Chelikowsky and S. G. Louie, Phys. Rev. Lett., 79, 1770 (1997).   DOI   ScienceOn
5 A. Gupta, M. T. Swihart, Adv. Funct. Mater., 19, 696 (2009).   DOI   ScienceOn
6 K. Y. Cheng, R. Anthony, U. R. Kortshagen and R. J. Holmes, Nano Lett., 11, 1952 (2011).   DOI   ScienceOn
7 C. Y. Liu, Z. C. Holman and U. R. Kortshagen, Adv. Funct. Mater., 20, 2157 (2010).   DOI   ScienceOn
8 J. H. Park, L. Gu, G. V. Maltzahn, E. Ruoslahti, S. N. Bhatia and M. J. Sailor, Nat. Mater., 8, 331 (2009).   DOI   ScienceOn
9 E. Gaffet and M. Harmelin, J. Less-Common Met., 157, 201 (1990).   DOI   ScienceOn
10 R. A. Bley and S. M. Kauzlarich, J. Am. Chem. Soc., 118, 12461 (1996).   DOI   ScienceOn
11 Z. C. Holman and U. R. Kortshagen, Nanotechnology, 21, 335302 (2010).   DOI   ScienceOn
12 L. Mangolini, E. Thimsen and U. Kortshagen, Nano Lett., 5, 655 (2005).   DOI   ScienceOn
13 M. R. Scriba, D. T. Britton, C. Arendse, M. J. van Staden and M. Harting, Thin Solid Films, 517, 3484 (2009).   DOI   ScienceOn
14 X. Li, Y. He and M. T. Swihart, Langmuir, 20, 4720 (2004).   DOI   ScienceOn
15 F. Huisken, G. Ledoux, O. Guillois and C. Reynaud, Adv. Mater., 14, 1861 (2002).   DOI   ScienceOn