• Title/Summary/Keyword: Passenger cabin

Search Result 141, Processing Time 0.026 seconds

Optimal Dual Pricing and Passenger Safety Level for Cruise Revenue Management

  • Cho, Seong-Cheol;Zhang, Mengfei
    • Journal of Navigation and Port Research
    • /
    • v.41 no.2
    • /
    • pp.63-70
    • /
    • 2017
  • Despite the remarkable continual growth of the world cruise industry, studies have yet to be attempted on many revenue management problems in cruise operations. This paper suggests two schemes that can be easily applied to cruise revenue management: optimal dual pricing and passenger safety level. In optimal dual pricing, a pair of higher and lower prices is applied to cabin reservation through market segmentation. This scheme can be executed with a linear price-response function for the current unreserved cabins. A cruise line could benefit from this scheme to maximize reservation revenue while attaining full occupancy. The dual pricing scheme is also devised to produce only integer demands to suit real management practices. The life boat capacity is an additional service capacity unique to the cruise industry, catering to passengers' safety. The concept of passenger safety level is defined and computed for any passenger life boat capacity of a cruise ship. It can be used to evaluate the passenger safety of a cruise ship in operation, as well as to determine the number of life boat seats required for a new cruise ship. Hypothetical examples are used to illustrate the operation of these two schemes.

PIV Measurements of Ventilation Flow from the Air Vent of a Real Passenger Car (거대 화상용 PIV 시스템을 이용한 실차 내부 공기벨트 토출흐름의 속도장 측정 연구)

  • Lee, Jin-Pyung;Kim, Hak-Lim;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.1
    • /
    • pp.3-8
    • /
    • 2009
  • Most vehicles have a heating, ventilating and air conditioning (HVAC) device to control the thermal condition and to make comfortable environment in the passenger compartment. The improvement of ventilation flow inside the passenger compartment is crucial for providing comfortable environment. For this, better understanding on the variation of flow characteristics of ventilation air inside the passenger compartment with respect to various ventilation modes is strongly required. Most previous studies on the ventilation flow in a car cabin were carried out using computational fluid dynamics (CFD) analysis or scale-down water-model experiments. In this study, whole ventilation flow discharged from the air vent of a real passenger car was measured using a special PIV (particle image velocimetry) system for large-size FOV (field of view). Under real recirculation ventilation condition, the spatial distributions of stream-wise turbulence intensity and mean velocity were measured in the vortical panel-duct center plane under the panel ventilation mode. These experimental data would be useful for understanding the detailed flow structure of real ventilation flow and validating numerical predictions.

NUMERICAL STUDY ON PERFORMANCE ASSESSMENT AND INSTALLATION CONDITIONS OF AN AUTOMOTIVE AIR CLEANER (자동차용 공기청정기의 성능 평가 및 설치 조건 도출을 위한 수치해석적 연구)

  • Lee, Y.H.;Seo, J.W.;Park, J.H.;Choi, Y.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.263-270
    • /
    • 2010
  • In this study, an air cleaner is considered to improve comfort, safety, and health of automobile passengers. The performance and installation conditions of the air cleaner have been studied to investigate their effects on the air quality in the cabin room using numerical analysis. A five-passenger sedan and a seven-passenger minivan that have comparatively large indoor volume have been considered. The distributions of the local mean age and the volume averaged age of indoor air are calculated according to the variation of the placement and the air flow of the air cleaner. In addition, a decrease of contamination concentration, especially VOCs(volatile organic compounds), by the air cleaner is numerically analyzed with time-accurate unsteady calculation to quantify the effect of the air cleaner on the indoor air quality. As a result, the effective installation and operation conditions of the air cleaner for the automobile cabin room could be suggested.

  • PDF

Implementation of Active Sound Enrichment Control for Improving Engine Sound Quality Inside the Cabin of a Passenger Car (차량 실내공간의 가속 시 엔진음 음질 향상을 위한 실시간 능동음향증강 제어 구현)

  • Lee, Young-Sup;Kim, Jeakwan;Ryu, Seokhoon;Kim, Seonghyeon;Park, Dong Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.195-202
    • /
    • 2016
  • In this study, a concept of active sound enrichment (ASE) control system was implemented and demonstrated for improving engine sound quality inside the cabin of a passenger car during acceleration. Unlike the active noise control cancels the noise for disturbance rejection, the ASE adds additional sound to the noise for tracking control. This approach requires a new algorithm to provide additional artificial sound to the original engine sound using active control strategy to achieve a target sound profile, which is predefined to satisfy required interior sound quality. The ASE algorithm was implemented in a digital controller dSPACE DS1401 and real-time control experiment was accomplished in an actual car. The ASE control results show that the actively enriched sound of each engine order against RPM tracks the target profiles precisely and quickly and improves the discontinuity, the level ratios and the sound pressure level of each engine order. Thus it is anticipated the ASE system can be applied for the improvement of the engine sound quality inside the cabin during acceleration.

COMPUTATIONAL SIMULATION OF FIRE SUPPRESSION SYSTEM FOR CABINS OF SHIPBOARD ENCLOSURE (선박 거주구역용 소화시스템의 전산 시뮬레이션)

  • Jung, I.S.;Chung, H.T.;Han, Y.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.40-45
    • /
    • 2016
  • The numerical simulation has been performed to predict the performance of the fire suppression system for cabin of shipboard enclosure. The present study aims ultimately at finding the optimal parametric conditions of the mist-injecting nozzles using the CFD methods. The open numerical code was used for the present simulation named as FDS (Fire Dynamics Simulator). Application has been done to predict the interaction between water mist and fire plume. In this study, the passenger cabin was chosen as simulation space. The computational domains for simulation in the passenger cabin were determined following the fire scenario of IMO rules. The full scale of the flow field is $W{\times}L{\times}H=4{\times}3{\times}2.4m^3$ with a dead zone of $W{\times}L{\times}H=1.22{\times}1.1{\times}2.4m^3$. The water mist nozzle is installed in ceiling center of 2.3 m height from the floor, and there are six mattresses and four cushions in the simulation space. The combination patterns of orifices to the main nozzle and the position to install nozzles were chosen as the simulation parameters for design applications. From the present numerical results, the centered-located nozzles having evenly combined orifices were shown as the best performance of fire suppression.

A Study on the Characteristics of Internal and External Pressure Variation for KTX (KTX차량 내외부의 압력변동 특성에 관한 연구)

  • 남성원
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.1
    • /
    • pp.26-31
    • /
    • 2004
  • A study is conducted to clarify internal and external pressure variation of passenger cabin for KTX. These pressure variation may give rise to the ear-discomfort for passenger and fatigue for carbody. In this study, the pressure variation of interior, gangway and exterior of KTX passenger car is measured by using the atmospheric pressure sensors and portable data acquisition system. The tunnel from 4000m to 200m in length are chosen far the investigation of tunnel length effects. From the results of experiment, the pressure variation of interior per second is under the ear-discomfort limitation in all of tunnel. And, We found that there are similar patterns of exterior pressure variation for each critical tunnel length. These results generally agree to RTRI's experimental result fur Shinkansen.

A Prediction of Change on the Body Style Proportion of the Future Passenger Cars (향후의 승용차 차체 스타일 비례의 변화 예측)

  • Koo, Sang
    • Archives of design research
    • /
    • v.13 no.2
    • /
    • pp.25-32
    • /
    • 2000
  • The body proportion of a passenger car has been changed by the demand of consumer and the market. Now the interior space proportion on a passenger car become to have the importance as the passenger space and this proportion has been changed as the new models have been developed. It didn't seems to had a unified direction or strategy in the dimensions of the domestic passenger cars on the early models, but they had a specific changes in dimensions on the later models. The proportion of the wheelbase and greenhouse can be calculated into as about 58% and 57% on the compact and sub-compact passenger cars while it is about 56% on mid-size sedan type passenger cars for thier 3-box structure body concept. The overrall proportion of the interior space is bigger on the compact and the sub-compact passenger cars than the mid-size passenger cars as the calculation shows. It can be concluded that the interior space proportion on the compact passenger cars would become larger, which is closed to 60%. And this trend would be appear on the mid-size passenger cars.

  • PDF

A Measurement and Evaluation of Indoor Thermal Conditions in Spring of a Coastal Passenger Ship - 590-Passenger Ro-Pax Type (590인승 Ro-Pax형(型) 연안여객선의 선실 내 봄철 온열환경 측정평가)

  • Hwang, Kwang-Il;Shin, Dong-Keol;Kim, Eun-Su;Do, Yo-Han;Choi, Yun-Seok;Cho, Jung-Yul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1170-1177
    • /
    • 2008
  • The purpose of this study is to measure and analyze the indoor thermal conditions in the spring of a korean coastal passenger ship which is 590-passenger Ro-Pax type built at 1997. Especially this study has focussed on the relations between the diffuser open ratio, which can be controlled by 12 steps, and the comfort. Followings are the results of this study. (1) The supply air volume to cabins are maximum 4.3 and 2 times more than design quantity when the diffusers in cabins are open 100% and 50%, respectively. (2) Regardless of diffuser open ratio, the supply air maintains constantly high temperature and below 10% of relative humidity through the experimental days. (3) All the cabins are not satisfied with the ASHRAE comfort criterion at the condition of 100% and 50% of diffuser open ratio, because of high temperature and low relative humidity. (4) At a low diffuser open ratio, number of cabins which satisfy the ASHRAE comfort criterion are increased. (5) Humidifying and dehumidifying, and hvac control system of each cabin must be reviewed and studied at the view of passengers to service more comfort environments.