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Abstract : Despite the remarkable continual growth of the world cruise industry, studies have yet to be attempted on many revenue
management problems in cruise operations. This paper suggests two schemes that can be easily applied to cruise revenue management:
optimal dual pricing and passenger safety level. In optimal dual pricing, a pair of higher and lower prices is applied to cabin reservation
through market segmentation. This scheme can be executed with a linear price-response function for the current unreserved cabins. A
cruise line could benefit from this scheme to maximize reservation revenue while attaining full occupancy. The dual pricing scheme is
also devised to produce only integer demands to suit real management practices. The life boat capacity is an additional service capacity
unique to the cruise industry, catering to passengers’ safety. The concept of passenger safety level is defined and computed for any
passenger life boat capacity of a cruise ship. It can be used to evaluate the passenger safety of a cruise ship in operation, as well as
to determine the number of life boat seats required for a new cruise ship. Hypothetical examples are used to illustrate the operation of
these two schemes.
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1. Introduction

Although the world cruise industry has shown a

remarkable average annual growth of 6.55% during the last

three decades(Cruise Market Watch, 2017), relatively limited

academic researches have been attempted to improve the

management decisions of cruise operation. A comprehensive

survey of existing researches and future issues including

cruise revenue management are found in Sun et al.(2011).

The purpose of this paper is to develop two easily

implementable schemes for cruise revenue management:

optimal dual pricing and passenger safety level. There have

been many practices of revenue management in various

industries including price differentiation, demand control,

capacity adjustment, and overbooking. A review of revenue

management applications in many industries is found in

Chiang et al.(2007). A significant concern in the revenue

management for cruise operation differentiated from other

industries is in the life boat capacity, which should be

considered important for passenger safety. Recently a

dynamic programming model for cruise reservation

management was developed(Maddah et al., 2010), which

considers the life boat capacity as a constraint and rejects

any new reservation request if the accumulated reservation

has reached the passenger life boat capacity. The revenue

management in cruise industry also has more issues to

consider than that in other industries such as on-board

spending, longer booking period, and very low no-show

rate(Biehn, 2006; Talluri and van Rhyin, 2005). A network

optimization model recently has been developed for the

cruise itinerary planning(Cho et al., 2012), which is one of

the major strategic decisions for cruise revenue

management. Some early ideas of price differentiation for

cruise reservation management are found in Ladany and

Arbel(1991), and various issues of pricing in cruise industry

are discussed in Lieberman(2012).

The optimal dual pricing developed in this paper

supposes an effective market segmentation of the cruise

market into two and a linear price-response

function(Phillips, 2012) for the unreserved cabins. It is

developed to be implemented on a real time basis with a

reliable estimation of the linear price-response function, and

produces integer values of cabin demands fit for practical

management applications. The beneficial goal of the optimal

dual pricing is to maximize the revenue from cruise

reservations while selling all the cabins. Easy computations

are also developed for a cruise line to develop its own

optimal dual pricing policies by simply maximizing a

quadratic revenue function. A practical formula to produce

dual pricing policies is derived, and the associated decision
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making implications for cruise reservations are provided.

A significant benefit from applying the optimal dual

pricing is the attainment of full occupancy to eliminate the

problem of perishable service capacity(Fitzsimmons et al.,

2014), which implies that any vacant cabin is a lost

opportunity of a cruise sale. The total number of

passengers in real cruises are often found to be greater

than the total number of life boat seats reserved for

passengers, especially more often at full occupancy. In this

light, the concept of passenger safety level of a cruise ship

is defined associated with the life boat capacity. An easy

computation of the passenger safety level is established

using the well-known normal probability approximation.

Managerial implications of the passenger safety level are

also suggested both for a cruise ship in operation and the

design of a new cruise ship.

A hypothetical cruise operation is used to show easy

developments of the optimal dual pricing policy for cruise

reservation revenue management. Some computations of the

passenger safety level are also provided for the numerical

examples.

2. Optimal dual pricing

The purpose of the dual pricing policy developed in this

paper is to provide an easily implementable tactic for the

revenue management in cruise reservation. It aims to

maximize the cabin reservation revenue while maintaining

the full occupancy for cruises.

It is assumed that a cruise line has a reliable estimation

of the linear price-response function(Phillips, 2005) for the

current unreserved cabins. The reservation for a cruise is

under way and the number of unreserved cabins currently

is . There are usually multiple cabin classes in a cruise

ship, but this paper assumes a single cabin class. It should

be noted, however, that the results obtained in this paper

are also applicable to multiple classes, if the demands for

different class cabins are independent of each other. The

price-response function,  , for the unreserved cabins

appears as in (1).

   ≥  (1)

It is clear to see that all of the  cabins will be sold if

the cruise price is as low as . This also implies that the

price-response function is, in fact, defined only for ≥.

The price elasticity of demand is completely determined by

  , and increases as  increases. Usually in practical

cruise operations the variable cost per cabin is negligible,

and the total operating cost is virtually the sum of very

high fixed costs regardless of the occupancy level(Ladany

and Arbel, 1991). This implies that the cruise line has only

to maximize the total revenue for the optimal reservation

management.

Suppose there is only one single price applied to the

entire reservation. Then the optimal single price can be

found by maximizing the following revenue for ≥.

   


Since  also is expressed to involve a perfect

square term as follows in (2),

  
 








(2)

 is maximized at 






if  ≥. If the

corresponding demand   


happens to be an

integer, then  





is clearly the optimal single

price for the cabin reservation. If not,   should be

corrected to produce an integer value. For this purpose,

suppose   is replaced with an adjusted price of  .

Then the corresponding demand becomes as follows in (3).

 


 (3)

For any value of , let ⌊⌋ be the biggest integer no

greater than , and ⌈⌉ the smallest integer no less

than . For an example, it is clear that⌊⌋ and
⌈⌉. Then the following theorem gives the optimal
single pricing policy for the revenue management to

maximize  with the corresponding integer demand

value for cabin.

Theorem 1. The revenue  is maximized at 

while maintaining   to have an integer value.

1) If  , then  .
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2) If ≥ , then  
 where  





,

 


⌊⌋, and  is defined as follows.
















⌊⌋ i f ≤ 



⌈⌉ i f   
(4)

(Proof) 1) If   holds, then 





  and

directly leads to  . This implies that  is the

revenue maximizing price.

2) If ≥ , then 
≥. If 




is an

integer, then it is clear that  
 implying that (4) holds

with . If   is not an integer, then from the

symmetry of values of  centered at 
, we can

find the adjusted profit maximizing price by setting 

equal to the value at which  has its minimum absolute

value with   being an integer. Therefore,  is

determined by 


⌊⌋ from (3), if

≤ . On the other hand, if   ,  is determined by

⌈⌉ . This completes the proof.
If  is small enough and  , Theorem 1 shows that

the single pricing at  maximizes the revenue, and leaves

no vacant cabin since    from (1). On the other

hand, if ≥ , Theorem 1 also implies that the single

pricing is vulnerable to the problem of perishable service

capacities, i.e. unsold cabins. Suppose   and ≤  ,

then the following (5) shows that the number of empty

cabins at ,  , is positive, which is clearly a lost

revenue opportunity. It should be noted that the only single

price guaranteeing the full occupancy is .

 ≥ 





 (5)

The dual pricing in this paper is to overcome the

problem of this perishable service capacity in (5) as well as

to increase revenue by segmenting the market into two.

There are many practical tactics for segmenting a cruise

market for price differentiation based on such factors as

time, region, age, preference, discount coupons, etc. A

common example of market segments into two for pricing

can be found when a cruise line promotes an early on-line

booking for a lower discount price before applying a higher

price for late reservations.

The optimal dual pricing suggests applying a pair of two

different prices, one to each of the two market segments. It

is assumed for simplicity that there is no shift of demand

between the two market segments. Cruise reservations are

made, in part, at a lower price for one market segment, and

at a higher price for the rest(the other market segment).

The lower price is set to  to ensure the full occupancy,

and the higher price is chosen to maximize the total

reservation revenue from both market segments. If  is a

higher price, the revenue function for the dual pricing is as

follows, and the cruise line would try to maximize it.

  ≥

From (1),  appears a quadratic function of  as

follows in (6),

 
 





 ≥  (6)

and  is maximized at 





if


  


is an integer. Again from the symmetry of

the quadratic function  centered at 

, the

following Theorem 2 develops the optimal dual pricing

policy.

Theorem 2. The revenue  is maximized at 

while maintaining the integer property of the corresponding

demand  .

 











 i f  is even


 i f  is odd
(7)

(Proof.) If  is even, 
  


is an integer. If 
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is odd, since 
 


is an integer closest to




,  is maximized at 


while

maintaining the integer property of  . This completes

the proof.

Again from (6), the additional revenue of the optimal

dual pricing over the single pricing at  is 

when  is

even, and


when  is odd. Fig. 1 shows the optimal

dual pricing with the lower  and the higher , and the

resulting additional revenue by a simple graph of the

price-response function  when  is even.

Fig. 1 Optimal dual pricing with  and 

The dual pricing, with a pair of the lower  and the

higher , is to be implemented on the condition that the

market can be segmented into two. Any measures taken by

the cruise line to segment the market incur a certain

amount of segmenting cost. If the market segmentation

works well with little demand shift between the market

segments, then the cruise line can expect an additional

revenue from applying this dual pricing. Let  be the cost

for the market segmentation. Then Theorem 2 also leads to

the following decision criteria to implement the dual pricing

for cruise revenue management.

If the number of unreserved cabins () is even and




 , then sell half of the cabins at  and the other half

at  

.

If the number of unreserved cabins () is odd and




  then sell


cabins at , and


cabins

at  


.

In practice, price differentiations for revenue management

are usually implemented on a real time basis to make the

best use of the latest market information and the remaining

service capacity. Whenever a reliable estimation of the

linear price-response function is available, the suggested

optimal dual pricing could be an easy practical tactic aiming

for both revenue increase and full occupancy, based on an

effective market segmentation.

3. Passenger safety level

The life boat capacity, which is the total number of life

boat seats installed in a cruise ship is another significant

service capacity unique in the cruise revenue management.

It is substantially important for passenger safety in times

of emergency. Maddah et al. (2010) developed a dynamic

programming cruise reservation model, where the life boat

capacity is included as a constraint and any marginal

booking request is rejected if the accumulated reservation

attains the life boat capacity. Different from the cruise

cabin capacity, the life boat capacity is not for revenue but

for passenger safety. Usually a cruise ship has a good

number of life boat seats enough to accommodate more

than the double occupancies for all cabins(P&O Cruises,

2017). Successful applications of the dual pricing developed

in this paper would fill all the cabins, many of which could

have more than double occupancy. This implies the real

number of passengers is often greater than the number of

life boat seats reserved for passengers, and the passengers

might encounter life threatening disaster in cases of

unexpected emergency. It should be added that the safety

of cruise operation, in fact, involves various managerial

and legal issues besides the life boat capacity. A

comprehensive introduction of safety issues of cruise

operation such as vessel sanitation, passenger security, and

the relevant risk management practices can be found in

Gibson(2012).

Suppose a cruise ship has  cabins, and let  be the

number of passengers in cabin  which is a random
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variable. Since all  cabins are in the same class and so

equipped with the same facilities and layouts, it is assumed

that  random variables  ,   ⋯ , have an identical

probability distribution. The total number of passengers on

board at departure date, , is as follows.


  





It is also assumed that the numbers of passengers in

different cabins are independent of each other, i.e. ⋯

are mutually independent random variables. Let  be the

mean of  (  ⋯ ), and 
 the variance of  . Then

the mean, , and the variance, 
 , of  are computed as

follows respectively.

 , 
  (8)

Let  be the passenger life boat capacity of a cruise

ship, which is the total number of life boats installed and

reserved for passengers in the cruise ship. If ≤ , a life

boat seat is always available for each passenger in any

unexpected emergencies. If  , then there would be a

positive number of passengers with no life boat seats. In

this sense the passenger safety level of a cruise ship is

suggested and defined as follows.

Definition 1. Suppose a cruise ship has the passenger life

boat capacity of  . Then the passenger safety level, , of

the cruise ship is defined as the following probability.

 ≤ (9)

From (9), the passenger safety level of a cruise ship is

the probability that every passenger on board could find

their own life boat seats in times of emergency. It is clear

that  increases as  increases, and higher values of 

would provide safer cruises.

For any cruise ship in operation, an approximate value of

the passenger safety level can be computed easily using the

well-known Central Limit Theorem(Hogg and Craig, 1978).

Since ⋯ are assumed to be identically and

independently distributed, the Central Limit Theorem

implies that 
  



, which is the mean of the  random

variables ⋯ , is getting closer to the normally

distributed random variable with the mean  and the

variance  as  increases. This directly leads to the

fact that the total number of passengers  also is regarded

to have the normal distribution with the mean of , and

the variance of 
 in (8). Therefore the random variable

defined as below has the standard normal distribution of

the mean 0 and the variance 1.





Then the passenger safety level of a currently operating

cruise ship with the passenger life boat capacity of  is

approximately computed using the standard normal

probability distribution, as follows.

 ≤ ≤
  (10)

Suppose the cruise line considers investing in a new

cruise ship with the service capacity of  cabins, and has a

reliable estimation of the probability distribution of the

number of passengers  from the past experiences. If

there is any aspired goal, , for the passenger safety level,

then the minimum number of total life boat seats  to

install for passengers in the cruise ship can also be found

by solving the following probability equation.

≤ ≤
  (11)

The relation (10) can compute and evaluate the

passenger safety level for any cruise ship in operation,

while (11) could be used to determine the number of life

boat seats for passengers in a new cruise ship when it is

designed.

4. Numerical examples

This section develops the optimal dual pricing policies for

a hypothetical cruise operation, and computes the passenger

safety levels using simple imaginary data.

4.1 Computations of optimal dual pricing

Suppose a cruise line is in the process of booking for a
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specific cruise, and the current number of unreserved

cabins is 100( ). All the cabins have the same size

and identical facilities, and a reliable price-response

function of (1) is estimated for the 100 cabins with   ,

and  . This implies that all the 100 cabins will be sold

at the reservation price of 1(=$1,000), and the price

response function is as follows.

    ≥ 

Since ≥ ·, the optimal single price  to

maximize the reservation revenue is computed as follows

by Theorem 1.

 
 


·


  (=$1,500)

Since     , 75 cabins will be booked, but

the rest 25 cabins will be left unreserved. This shows the

problem of perishable capacity of 25 empty cabins resulting

from this single pricing. The only single price for full

occupancy is  . The dual pricing developed in this

paper fills all the cabins while yielding more revenue than

the full occupancy single pricing at  . Since   is

an even number, the optimal higher price  is computed to

be as follows by (7) in Theorem 2.

 

 ·


 ($2,000)

Since    , the cruise line can get

additional revenue of 


·


 over the single

pricing at   , by selling 50 cabins at the higher price 2

and the rest 50 at the lower price 1. The cruise line should

apply this dual pricing, if the market segmentations cost,  ,

is less than 50(=$50,000). A possible market segmentation

for this specific dual pricing might be to reward the loyal

repeat passengers with 50% discount coupons to book 50

cabins at  .

For an odd number instance, suppose  . Then the

corresponding price-response function appears as follows.

    ≥ 

Again, from Theorem 1, the optimal single pricing is

computed as follows.

 
 


·





 (=$1,460)

Since     and   , again

23 cabins will remain empty, which corresponds to a lost

revenue opportunity. The optimal dual pricing by Theorem

2 computes the higher price  as follows.

 


 ·


 (=$1,960)

    suggests that 47 cabins should be

booked at  , and the rest(48 cabins) at  . By

this dual pricing based on an effective market segmentation

would give more revenue of


·


  than

the single pricing at  . Therefore, the cruise line

would choose to benefit from this dual pricing if the market

segmenting cost is less than 45.12($45,120).

4.2 Computations of passenger safety level

Suppose a cruise line has a cruise ship, currently in

operation, with the total number of 100 cabins( ) of

the same class. Let  be the number of passengers in

cabin (  ⋯), which is a random variable. A typical

booking for a cabin usually is of double occupancy(two

passengers). However, many cabins are frequently found to

accomodate 3, 4, or even 5 passengers(Lieberman, 2012).

After a successful introduction of the optimal dual pricing

for revenue management, the cruise line has eliminated the

problem of perishable cabin capacity, and estimated the

probability distribution of  from the accumulated records

of cabin reservations as in Table 1.

No. of passengers() 1 2 3 4

  0.1 0.5 0.3 0.1

Table 1 Probability distribution of 

Since   and   from the distribution of

Table 1, the mean  and the variance 
 of the total

number of passengers  in (8) are computed as follows.
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 , 
 

Since cruise ships in general have more life boat seats

than the double occupancies in all cabins, it is not needed

to compute the passenger safety level for ≤.

Suppose , then (10) computes  ≤   

using the normal probability approximation. This implies

that about half of the cruises would leave a positive

number of passengers with no opportunity to find their own

life boat seats. Even though 240 is greater than the number

of passengers at the full double occupancy(×  ), it

is clear that the cruise ship needs much more life boat

seats to be ready for any potential emergencies. Again from

(10), it is computed that  ,  , and

  . Especially,   implies that almost

all(99.4%) cruises would be safe with the passenger life

boat capacity of 260 for all the passengers could find their

own life boat seats in time of emergency.

Suppose a cruise line considers investing in a new cruise

ship of 100 cabins of the same class and wants to attain

the passenger safety level of 95%( ). From solving

the probability equation in (11), it is found that  .

This suggests that the new ship should be equipped with

more than 253 life boat seats for passengers. This should

be reflected in designing the new cruise ship. If   is

a safety goal, then (11) computes a greater passenger life

boat capacity of  , and implies the new ship

requires at least 259 life boat seats for passengers.

4. Conclusions

This paper has developed the concepts of optimal dual

pricing and passenger safety level, both of which imply

easy revenue management schemes implementable for

cruise operation.

The two beneficial goals of the optimal dual pricing are

to achieve the maximum reservation revenue and to

maintain the full occupancy. The dual pricing policy works

by applying a pair of reservation prices to two different

segments of market, a lower price  to one market

segment and a higher price  to the other. This dual

pricing works on an effective effort to segment the market

into two by the cruise line. It eliminates the inevitable

problem of perishable cabin capacity of the single pricing

while maximizing the additional revenue over the single

pricing at . The dual pricing can be implemented anytime

during the cruise booking period when a dependable

estimation of the linear price-response function for

unreserved cabins is available. It is easily implementable in

the sense that a cruise line can develop its own dual

pricing policies by simply maximizing a quadratic revenue

function. A practical formula to produce the optimal dual

pricing for any given number of the current unreserved

cabins, and the following decision making criteria are also

developed. Especially, the dual pricing in this paper has

been devised to produce only integer values of cabin

demands to fit in with usual management practices. If the

cost of market segmentation is expected less than the

additional revenue from the dual pricing, the cruise line

could benefit from applying it.

The passenger safety level, suggested in this paper, is

the probability that each passenger on board can access

their own life boat seats in times of emergency. It has been

defined for any life boat capacity of a cruise ship, and

computed using the popular normal probability distribution.

It can be used to evaluate the passenger safety of a cruise

ship currently in operation, and also to determine the

number of life boat seats to install in a new cruise ship for

a safety design.

The optimal dual pricing in this paper assumes a single

class of passenger cabins. However, it should be noted that

it is also applicable to cruise ships with multiple cabin

classes if the demands for different class cabins are

independent of each other. The optimal dual pricing in this

paper works on an effective cruise market segmentation

into two. This implies that the dual pricing assumes that

there is no shift of demand between the two segmented

markets. A possible new research subject would be to

develop an extended and more flexible dual pricing model

which allows the shifts of demand between the market

segments. Real world applications of the optimal dual

pricing and the passenger safety level to the cruise

operations in practice, and assessing the achieved benefits

of these applications are also among future research

possibilities.
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