• Title/Summary/Keyword: Passenger Flow

Search Result 214, Processing Time 0.026 seconds

External Flow and Cabin Interior Noise Analysis of Hyundai Simple Model by Coupling CAA++ and ACTRAN

  • Kim, Young Nam;Chae, Jun Hee;Jachmot, Jonathan;Jeong, Chan Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.291-291
    • /
    • 2013
  • The interior vehicle noise due to the exterior aerodynamic field is an important topic in the acoustic design of a car. The air flow detached from the A-pillar and impacting the side windows are of particular interest as they are located close to the driver / passenger and provides a lower insulation index than the trimmed car body parts. HMC is interested in the numerical prediction of this aerodynamic noise generated by the car windows with the final objective of improving the products design and reducing this noise. The methodology proposed in this paper relies on two steps: the first step involves the computation of the exterior flow and turbulence induced non-linear acoustic field using the CAA(Computational aeroacoustics) solver CAA++. The second step consists in the computation of the vibro-acoustic transmission through the side window using the finite element vibro-acoustic solver Actran. The internal air cavity including trim component are included in the simulation. In order to validate the numerical process, an experimental set-up has been created based on a generic car shape. The car body includes the windshield and two side windows. The body is made of aluminum and trimmed with porous layers. First, this paper describes the method including the CAA and the vibro-acoustic models, from the boundary conditions to the different components involved, like the windows, the trims and the car cavity is detailed. In a second step, the experimental set-up is described. In the last part, the vibration of the windshield and windows, the total wind noise level results and the relative contributions of the different windows are then presented and compared to measurements. The influence of the flow yaw angle (different wind orientation) is also assessed.

  • PDF

Implementation of the Passenger Positioning Systems using Beacon (Beacon을 활용한 선박 탑승자 위치확인 시스템의 구현)

  • Jeong, Seon-Jae;Yim, Jae-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.153-160
    • /
    • 2016
  • In this paper, we propose a system that tracks the position of the passengers and sailors using a Bluetooth-based Beacon in the ship. The position of the tracking passengers, sometimes fatal emergencies of the rescue team, such as the sinking of the ship is utilized in order to efficiently and quickly rescue the passengers, and the collected data can be utilized additionally by grasping the flow of human traffic patterns. The system proposed in this paper, install MAC data acquisition called AP (Access Point) for each cabin, and in the installed AP retrieves Tag of the information provided to the passenger and collected. A Tag has only its own MAC Address to the privacy, no user information is not collected. All data communication by sending and receiving MAC Address was only to ensure anonymity.

COMPUTATIONAL SIMULATION OF FIRE SUPPRESSION SYSTEM FOR CABINS OF SHIPBOARD ENCLOSURE (선박 거주구역용 소화시스템의 전산 시뮬레이션)

  • Jung, I.S.;Chung, H.T.;Han, Y.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.40-45
    • /
    • 2016
  • The numerical simulation has been performed to predict the performance of the fire suppression system for cabin of shipboard enclosure. The present study aims ultimately at finding the optimal parametric conditions of the mist-injecting nozzles using the CFD methods. The open numerical code was used for the present simulation named as FDS (Fire Dynamics Simulator). Application has been done to predict the interaction between water mist and fire plume. In this study, the passenger cabin was chosen as simulation space. The computational domains for simulation in the passenger cabin were determined following the fire scenario of IMO rules. The full scale of the flow field is $W{\times}L{\times}H=4{\times}3{\times}2.4m^3$ with a dead zone of $W{\times}L{\times}H=1.22{\times}1.1{\times}2.4m^3$. The water mist nozzle is installed in ceiling center of 2.3 m height from the floor, and there are six mattresses and four cushions in the simulation space. The combination patterns of orifices to the main nozzle and the position to install nozzles were chosen as the simulation parameters for design applications. From the present numerical results, the centered-located nozzles having evenly combined orifices were shown as the best performance of fire suppression.

A Gap-acceptance Model Considering Driver's Propensity at Uncontrolled Intersection (운전자 특성 등을 고려한 무통제교차로의 간격수락 모델)

  • Jang, Jeong-Ah;Lee, Jung-Woo;Choi, Kee-Choo
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.6
    • /
    • pp.71-80
    • /
    • 2008
  • Typically uncontrolled intersections are characterized by the absence of signal, stop and yield sign, and by very light traffic volume. In this study, a gap acceptance model for such uncontrolled intersections has been modeled. The motivation is to identify the behavior of drivers so that the traffic flow phenomena can be easily understood. For this, actual traffic survey was accomplished at intersections in Suwon and the data have been fed into modeling process. The logit model was used and the results showed that total delay experienced by drivers, turning right movement, age, sex, and the existence of passenger affected gap acceptance. For example, male drivers, with experiencing longer delay and having passenger(s) with them, accepted shorter gaps. These identified characteristics regarding gap acceptance could be used for facility design and/or safety oriented traffic information dissemination near uncontrolled intersections.

At which station would be installed subsidiary-main track? - Problems of interference with mixed traffic on the railway (완.급행열차 혼합운행에 따른 부본선 설치 정거장 검토)

  • Rho, Hag-Lae
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1848-1859
    • /
    • 2011
  • A subsidiary-main track for passenger station is a low-speed track section distinct from a through route such as a main track. It is parallel to a through track and connected to it at both ends by switches. Sidetracks allow for fast, high priority trains to pass slower or lower priority trains going the same direction. They are important for efficiency to order and organize the flow of rail traffic. In this paper we first describe the minimum headway between trains using the concept of occupation time in a block section, which depends on block systems, signalling system and safety technology. And then a stepwise approach is presented to select station, which is suitable to install sidetrack for a given train-traffic pattern. This approach is tested with sample example data, which are surveyed from track geometry based on the to-be-constructed line.

  • PDF

A Study on the Development of Highly Efficient Sintered Brake Shoe in Railway Vehicle (철도 차량용 고성능 소결제륜자 개발에 관한 연구)

  • Ko, Kwang-Nam;Kim, Sung-Kwon;Kim, Sang-Ho;Kwon, Seok-Jin;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.986-993
    • /
    • 2011
  • The role of brake is safely to transport passenger & cargo and stop vehicles at emergency in railway vehicle. Brake system reduces the speed by control command of electricity or air. mechanical methods to perform brake are disk brake & tread brake. This study targeted development of highly efficient sintered alloy brake shoe in railway vehicle whose high frictional coefficient, wear resistance, compatibility of the existing tread brake shoe & minimization of wheel's thermal damage and performed development of friction material's formulation, analysis of pressure distribution in wheel tread & brake shoe, optimum form design through analysis of heat flow.

  • PDF

Numerical Analysis of Aerodynamics and Acoustics around a Car Side mirror (수치해석을 통한 자동차 사이드 미러 주위의 공력 및 소음해석)

  • Park, Kihwan;Park, Hyunho;Lim, Taehun;Choi, Eundong;Kim, Moonsang
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.2
    • /
    • pp.10-15
    • /
    • 2010
  • Aerodynamic noise is becoming the major source of annoyance for modern cars recently and is caused by many different noise sources in a car. Appropriate CFD technologies, therefore, have been developed to resolve the noise problems related with aerodynamics. It is necessary for designers to fully understand the relationship between vehicle aerodynamics and wind noise acoustics. In this study, we simulate the flow fields around two different shapes of side mirror models of passenger car and analyze the noise phenomena around one side mirror model that has lower drag than the other model using Fluent 6.3.

  • PDF

Bus Platoon Separation and Intersection Delay Analysis (버스군(群) 분리특성(分離特性)과 교차로(交叉路) 지체분석(遲滯分析))

  • Sul, Jae Hoon;Park, Chang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.25-32
    • /
    • 1988
  • Vehicle platoons starting a stopline are dispersed while travelling along the street and the delay at the next intersection depends on the arrival pattern of dispersed traffic flow. In this paper, the platoon dispersion charactiristics of our country, especially the time gap between passenger cars and buses caused by the dwell time at bus stops, were investigated through travel time surveys. Based on the survey results, on improved analysis method of intersection delay is proposed.

  • PDF

Effective Smoothness of Surge Pressure Generated in the Return Line of Active Suspension Hydraulic System for Vehicle (자동차 능동 현가장치 유압계 회귀 관로에서의 서지 압력 저감법)

  • 정용길;이일영;윤영환
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.111-118
    • /
    • 1998
  • Surge pressure problem at the oil return line of the hydraulic circuit of an active suspension system for passenger cars was investigated by experiments and numerical analyses. In the numerical analyses, the method of characteristics was used for simulating unsteady flow in the hydraulic system and gas discrete model was adopted for estimating gas volume variation in separated liquid column. In the experiments and analyses, effects of the physical parameters of the accumlator on smoothing surge pressure was elucidated.

  • PDF

The Effects of EGR and EGR Induction Point on Combustion Noise of a Passenger Diesel Vehicle (승용 디젤엔진의 EGR과 Induction위치에 따른 소음 영향)

  • Kang, Sang-Kyu;Kim, Jae-Heon;Baek, Sung-Nam;Kang, Koo-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.393-396
    • /
    • 2007
  • EGR is well established and efficient means to reduce NOx emissions. The increase of EGR rate affects the ignition delay of the combustion due to the lower oxygen availability. The increasing of the ignition delay period causes large combustion noise. In this study, the effects of EGR and Induction Point on combustion noise are investigated by measuring cylinder pressure and noise. As a result, The Combustion noise is markedly increased under the application of EGR. The increased premixed distance by displacing EGR Induction point in flow direction causes the uniform EGR distribution and the modulation level of the combustion noise is reduced slightly.

  • PDF