• Title/Summary/Keyword: Particulate Organic Matter

Search Result 260, Processing Time 0.023 seconds

Characteristics of indoor air quality in the overground and underground railway stations (지상과 지하역사의 실내공기질 특성과 외기영향 평가)

  • Namgung, Hyeong-Kyu;Song, Ji-Han;Kim, Soo-Yeon;Kim, Hee-Man;Kwon, Soon-Bark
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.17-25
    • /
    • 2016
  • In this study, the air quality of underground and overground railway stations was evaluated focusing on the degree of influence of the outside air quality. The measured components were particulate matter ($PM_{10}$), carbon dioxide ($CO_2$), carbon monoxide (CO), nitrogen dioxide ($NO_2$), formaldehyde (HCHO), ozone ($O_3$), total airborne bacteria (TAB), total volatile organic carbon (TVOC), and Radon (Rn), which are included in the maintenance standards and recommended standards of the Indoor Air Quality Management Act. Also, the indoor/outdoor concentration ratios of $PM_{10}$, $NO_2$, and $O_3$ were calculated to estimate the influence of the outdoor air quality. The concentrations of $PM_{10}$ HCHO, TVOC, $NO_2$, and Rn in the underground stations were found to be higher than those in the overground stations. These results indicate that the (present) generation of contaminants are caused by the indoor source of the underground station. The ozone concentration of the overground stations was higher than that of the underground stations, which indicates that the outdoor ozone concentration influenced that of the overground stations directly. Thus, methods of improving the IAQ should take into consideration the types of contamination.

Mechanism of Oxygen-Deficient Water Formation in Jindong Bay (진동만의 빈산소수괴 형성기구)

  • 김동선;김상우
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.177-186
    • /
    • 2003
  • The influences of horizontal and vertical flow components including the stratification of water column and the wind field on the formation of oxygen-deficient water in summer in Jindong Bay, northern part of Chinhae Bay, were examined. Temperature, salinity and dissolved oxygen in seawater, and direction and velocity of wind were observed in Jindong Bay from March 1998 to February 1999. Low concentration of 5 mg/L in dissolved oxygen (DO) appeared at the bottom layer from May to September. Extremely low DO concentration less than 3 mg/L was investigated in summer (July to August) when stratification was strongest due to abrupt vertical gradients of temperature and salinity in water column. Bottom waters with the extremely low DO concentration were observed even in spring (May to June) at the inner part of the bay. In summer (August to September), the bottom waters with the low DO concentration (less than 5 mg/L) existed at the water depth from 4 to 6 m, being moved upward to the surface layer compared to other seasons. Vertical components of residual flow, calculated by the direction and velocity of wind, in Jindong Bay in summer showed that locally prevailed northerly and westerly wind resulted in downwelling flow at the outer part of the bay and conversely, upwelling at the inner part of the bay. In addition, bottom current at the outer part corresponding to the downwelling area directed to the inner part, probably resulting in a transport of the particulate organic matter settled at the bottom waters to the inner part of the bay. The oxygen-deficient watermass, which was formed at the bottom layer of the inner part, was likely to transported to the surface layer by the upwelling flow.

Limiting Nutrient Based on Alkaline Phosphatase Activity in the Frontal Area of the Southern Sea, Korea (춘계 남해 전선역에서 알칼리 인산분해 효소를 통한 제한 영양염의 평가)

  • Oh, Seok Jin;Jang, Minik;Nam, Ki Taek;Kim, Seok-Yun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.885-892
    • /
    • 2017
  • We estimated the limiting nutrient and DIP limiting history based on alkaline phosphatase (APase) activity during the spring of 2017 in the Southern Sea, Korea. In the frontal area, concentration of dissolved inorganic phosphorus (DIP), dissolved inorganic nitrogen (DIN): DIP ratio and Chlorophyll a (Chl-a) were < $0.2{\mu}M$, 23.2 and $2.2{\mu}g/L$, respectively, indicating high productivity despite DIP limiting. The relationship between APase and DIP indicates that the study area had limited DIP because of a strongly reverse correlation (r= -0.81; P<0.001). Relationship between APase and Chl-a (r=0.61, p<0.001) also indicated that APase may have been induced by phytoplankton (ca. 60 %) and bacteria (ca. 40 %). In DIP limiting history in this study area, frontal area and non-frontal areas might have induced long-term DIP limitation and the recent relief from DIP-limitation, respectively, based on distributions of dissolved APase and particulate APase. Thus, these results suggest that by measuring the enzyme that hydrolyzes organic matter such as APase in frontal area, it is possible to estimate temporal and spatial characteristics of limiting nutrient, thereby improving our understanding of biogeochemistry cycles.

${\delta}^{13}C$ Evidence for the Importance of Local Benthic Producers to Fish Nutrition in the Inner Bay Systems in the Southern Coast of Korea (${\delta}^{13}C$ 분석에 의한 남해 연안 내만역 어류 영양원으로써 저서생산의 중요성 평가)

  • Kang, Chang-Keun;Choy, Eun-Jung;Kim, Young-Sang;Park, Hyun-Je
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.1
    • /
    • pp.56-62
    • /
    • 2009
  • Stable carbon isotope analysis was used to investigate the autotrophic carbon sources supporting fisheries in three coastal bay systems of the southern coast of Korea. Carbon isotope ratios (${\delta}^{13}C$) of 31 fish species were analysed and compared with those of a range of potential primary food sources [e.g., seagrass (Zostera marina), seagrass epiphytes, benthic microalgae, macroalgae, marine particulate organic matter (marine POM), marsh plant (Phragmites australis) and terrestrial POM]. ${\delta}^{13}C$ values (range, -16.2${\sim}$-8.3‰) of fishes from the coastal embayment systems were overlapped with those of seagrass (-8.3${\pm}$1.9‰), seagrass epiphytes (-12.4${\pm}$0.6‰), benthic microalgae (-15.4${\pm}$1.6‰) and macroalgae (-16.0${\pm}$1.8‰). In addition, fishes (-12.9${\pm}$1.5‰) from the study area had distinctly higher ${\delta}^{13}C$ values compared to those collected in offshore sites (-17.3${\pm}$0.8‰) of the southern sea of Korea and Nakdong River (-23.2${\pm}$1.6‰). This result indicates that carbon supporting fish communities of these coastal bay systems is mainly derived from the local benthic producers.

Community Structure of the Macrobenthos in the Soft Bottom of Youngsan River Estuary, Korea 1. Benthic Environment (영산강 하구역의 연성저질에 서식하는 저서동물 군집 1. 저서환경)

  • LIM Hyun-Sig;PARK Kyung-Yang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.3
    • /
    • pp.330-342
    • /
    • 1998
  • Benthic environmental parameters were analysed at 40 stations during the period from April 1995 to February 1996. such as water temperature, salinity, and dissolved oxygen (DO)-concentration in the surface and bottom water layers, grain size, chemical oxygen demand (COD), ignition loss, particulate organic carbon (POC) in the sediment of Youngsan River estuary. The water temperature ranged from 4.1 to $29.8^{\circ}C$ in the surface and 4.0 to $20.7^{\circ}C$ in the bottom layers. Salinity ranged from 15.1 to $33.6\%_{\circ}$ in the surface and 31.5 to $33.2\%_{\circ}$ in the bottom layer. The salinity in the outer pan of the study area was higher than that of inner area from autumn to spring, whereas they remained lower in summer. Dissolved oxygen concentration ranged from 5,1 to 11.2 $mg/\ell$ in the surface, and 0.79 to 10,2 $mg/{\ell}$ in the bottom layers. Hypoxic condition ($\le2.0mg/\ell$) was developed in the bottom water layer from Youngsan dike to Mokpo Harhour in summer due to the summer stratification. The surface sediment type was silty clay with a mean grain size of $9.12{\pm}0.45\phi$. The range of COD was from 6.15 to $15.49mgO_2/g$ with a mean of $10.59{\pm}12.64mgO_2/g$. The COD in the inner stations was relatively higher than that of outer stations, and decreased toward the outer part of the study area. Ignition loss (IL) ranged from 3.35 to $15.45\%$ with a mean of $5.96{\pm}1.91\%$. Principal component analysis was carried out from the following five environmental parameters: water temperature, dissolved oxygen in the bottom layer and mean grain size, clay content and COD in the sediment. The forty stations in the study area were classified into three stational groups. Group I was located in the inner part of the estuary characterised by relatively low surface salinity and bottom water temperature, fine sedimemt texture, high organic matter and low dissolved oxygen concentration during the summer. Meanwhile, Group III showing relatively high bottom salinity and water temperature was located in the outer part of the estuary characterising coarse sediment and low organic content in sediment. Group II was between Group I and Group III. The division of the areal groups had high correlations to the DO in the bottom layer and clay content in the sediment.

  • PDF

Assessment of Eutrophication Using Trophic State Index and Water Quality Characteristics of Saemangeum Lake (새만금호의 수질 특성 및 영양상태지수를 이용한 부영양화 평가)

  • Jong Gu Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.587-597
    • /
    • 2023
  • We evaluated the eutrophication of Saemangeum Lake, which causes abnormal growth of algae, using the Carlson index. Eutrophication characteristics of Saemangeum Lake were analyzed. For the study, water quality surveys were conducted at 7 stations in Saemangeum Lake every month in 2021. The concentration of Chl.a was slightly higher in the Mankyeong water system in winter, and slightly higher in the Dongjin water system in spring and summer, but overall, except for some periods, the concentration was similar to or lower than the lake water quality environmental standard of class 3. COD showed water quality similar to or above the lake quality environmental standard of grade 4 in both the Mankyeong and Dongjin water systems in the summer and Autumn. TOC concentrations were within lake water quality standard 3 at all sites. Total phosphorus concentrations exceeded the lake water quality standard of Class 4 and were higher in January and August after rainfall. In the correlation analysis between water quality factors, the correlation of organic matter, total phosphorus, and total nitrogen to salinity was relatively high. This reflected the water quality characteristics of freshwater, brackish water, and seawater areas due to seawater inflow through the drainage gate and freshwater inflow through upstream rivers. According to the characteristics of eutrophication fluctuations in Saemangeum Lake by trophic state index, the indices of Chl.a, SD, and TN showed water quality in the early stage of eutrophication, while the TP index showed a severe eutrophication state. The magnitude of the eutrophication index among water quality components was TSI(TP) > TSI(TN) > TSI(SD) > TSI(CHL) in all water systems. Quadrant analysis of the deviation of TSI(CHL) from TSI(TP) and TSI(SD) on a two-dimensional plane showed that there was no limiting effect of total phosphorus on algal growth in all water systems. In addition, the factors af ecting light attenuation appeared to be dominated by small particulate matter from outside sources.

Analysis of Major Factors related to the Generation of Fine Particulate Matter in Hanwoo Manure Composting Facilities (한우분뇨 퇴비화시설에서의 미세 입자상물질 발생 주요인자 분석)

  • Jeong, Kwang-Hwa;Park, Hoe-Man;Lee, Dong-Jun;Kim, Jung-Kon;Lee, Dong-Hyun;Kim, Da-Hye
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.4
    • /
    • pp.53-68
    • /
    • 2020
  • The concentrations of ammonia, hydrogen sulfide and fine dust were measured in the compost facility of a full-time Hanwoo breeding farms. The experiments were conducted in stack type composting facility(T1) and mechanical-stirred composting facilities(T2, T3). In the stack type composting facility, the highest temperature of compost pile was 46℃, and in the two mechanical-stirred composting facilities, it rose to 63℃ and 68℃, respectively. The concentrations of PM2.5 at T1, T2 were 15 ㎍/㎥ and 5~10 ㎍/㎥, respectively. And the concentration of PM2.5 at T3 was below 10 ㎍/㎥. The highest concentration of ammonia generated at T1 was 4 ppm, but no hydrogen sulfide was detected. The ammonia concentrations at T2 and T3 were 3 ppm and 4 ppm, respectively. However, hydrogen sulfide was not detected in both facilities. At T3, the ammonia concentration increased to 65 ppm at the point where the compost was stirred with a mechanical agitator. During composting period, the pH of the compost pile decreased from 9.06 to 8.94 and then increased to 9.14 as the composting period elapsed. The NaCl content of compost was 0.09% after composting process was complete. Moisture content of compost decreased from 65.9% to 62% as composting progressed. As composting proceeded, the content of volatile solids decreased from 65.6% to 64.7% and the content of TKN decreased from 1.327% to 1.095%.

Applications of Radiocarbon Isotope Ratios in Environmental Sciences in South Korea (방사성탄소동위원소비 분석을 적용한 우리나라 환경과학 연구)

  • Neung-Hwan Oh;Ji-Yeon Cha
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.281-302
    • /
    • 2023
  • Carbon is not only an essential element for life but also a key player in climate change. The radiocarbon (14C) analysis using accelerator mass spectrometry (AMS) is a powerful tool not only to understand the carbon cycle but also to track pollutants derived from fossil carbon, which have a distinct radiocarbon isotope ratio (Δ14C). Many studies have reported Δ14C of carbon compounds in streams, rivers, rain, snow, throughfall, fine particulate matter (PM2.5), and wastewater treatment plant effluents in South Korea, which are reviewed in this manuscript. In summary, (1) stream and river carbon in South Korea are largely derived from the chemical weathering of soils and rocks, and organic compounds in plants and soils, strongly influenced by precipitation, wastewater treatment effluents, agricultural land use, soil water, and groundwater. (2) Unprecedentedly high Δ14C of precipitation during winter has been reported, which can directly and indirectly influence stream and river carbon. Although we cannot exclude the possibility of local contamination sources of high Δ14C, the results suggest that stream dissolved organic carbon could be older than previously thought, warranting future studies. (3) The 14C analysis has also been applied to quantify the sources of forest throughfall and PM2.5, providing new insights. The 14C data on a variety of ecosystems will be valuable not only to track the pollutants derived from fossil carbon but also to improve our understanding of climate change and provide solutions.

Specific Absorption Coefficients for the Chlorophyll and Suspended Sediment in the Yellow and Mediterranean Sea (황해와 지중해에서의 클로로필 및 부유입자의 비흡광계수 연구)

  • 안유환;문정언
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.353-365
    • /
    • 1998
  • Light absorption coefficient per unit mass of particles, i.e., specific absorption coefficient, is important as one of the main parameters in developing algorithms for ocean color remote sensing. Specific absorption coefficient of chlorophyll ($a^*_{ph}$) and suspended sediment ($a^*_{ss}$) were analyzed with a spectrophotometer using the "wet filter technique" and "Kishino method" for the seawater collected in the Yellow and Mediterranean Sea. An improved data-recovery method for the filter technique was also developed using spectrum slopes. This method recovered the baselines of spectrum that were often altered in the original methods. High $a^*_{ph}({lambda})$ values in the oligotrophic Mediterranean Sea and low values in the Yellow Sea were observed, ranging 0.01 to 0.12 $m^2$/mg at the chlorophyll maximum absorption wavelength of 440 nm. The empirical relationship between $a^*_{ph}$(440nm) and chlorophyll concentrations () was found to fit a power function ($a^*_{ph}$=0.039 $^{-0.369}$), which was similar to Bricaud et al. (1995). Absorption specific coefficients for suspended sediment ($a^*_{ss}$) did not show any relationship with concentrations of suspended sediment. However, an average value of $a^*_{ss}$ ranging 0.005 - 0.08 $m^2$/g at 440nm, was comparable to the specific absorption coefficient of soil (loess) measured by Ahn (1990). The morepronounced variability of $a^*_{ss}$ than $a^*_{ph}$ was determined from the variable mixing ratio values between particulate organic matter and mineral. It can also be explained by a wide size-distribution range for SS which were determined by their specific gravity, bottom state, depth and agitation of water mass by wind in the sea surface.

A Study on the Functional Feeding Groups and Community Stability of Benthic Macroinvertebrate in Forest Fire Area (산불지의 저서성대형무척추동물 섭식기능군 및 군집안정성에 관한 연구)

  • Sim, Kwang Sub;Kim, Myoung Eun;Lim, Joo Hoon;Seo, Eul Won;Lee, Jong Eun
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.1
    • /
    • pp.112-117
    • /
    • 2011
  • This study was conducted for searching the functional feeding groups, and community stability of the macroinvertebrate on forest fire area of Uljin-gun. The samples were collected from 2 sites of control area and 2 sites of experimental area during 2007 to 2009. The identified species were 89 belonged to 47 families, 16 order, 6 class, and 4 phylum in control area. And 84 belonged to 43 families, 16 order, 6 class, and 4 phylum were identified in experimental area. As a result of changes in species and individuals of E.P.T. taxa investigated in experimental area by year, Ephemeroptera was 21 species, $2,434.6inds./m^2$, Plecoptera was 3 species, $199.8inds./m^2$, and Trichoptera 14 species, $540.2inds./m^2$ in 2007. And in 2009, Ephemeroptera was 9 species, $296inds./m^2$, Trichoptera was 4 species, $44.4inds./m^2$, and Plecoptera was none, showing that species and individuals belonging to E.P.T. taxa decrease rapidly every year. Community analysis by year, in 2008 when the water system started to be influenced by the fire directly, it showed a trend that H' and RI decreased in the experimental area. Functional feeding group by year, it showed a trend that species and individuals of GC type which is a functional group picking up and eating FPOM (fine particulate organic matter) from deposits in the bottom of water or benthic areas and performs an important function of material circulation in ecosystem decrease every year. Community stability by year, an environment of water system in forest fire area started to be somewhat destroyed, from 2008, it is shown that both species in I area which have great ability of resistance and recovery and species in III area which live in relatively stable water system decreased a little.