DOI QR코드

DOI QR Code

Applications of Radiocarbon Isotope Ratios in Environmental Sciences in South Korea

방사성탄소동위원소비 분석을 적용한 우리나라 환경과학 연구

  • Neung-Hwan Oh (Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University) ;
  • Ji-Yeon Cha (Environmental Planning Institute, Seoul National University)
  • 오능환 (서울대학교 환경대학원 환경계획학과) ;
  • 차지연 (서울대학교 환경계획연구소)
  • Received : 2023.09.25
  • Accepted : 2023.10.06
  • Published : 2023.12.31

Abstract

Carbon is not only an essential element for life but also a key player in climate change. The radiocarbon (14C) analysis using accelerator mass spectrometry (AMS) is a powerful tool not only to understand the carbon cycle but also to track pollutants derived from fossil carbon, which have a distinct radiocarbon isotope ratio (Δ14C). Many studies have reported Δ14C of carbon compounds in streams, rivers, rain, snow, throughfall, fine particulate matter (PM2.5), and wastewater treatment plant effluents in South Korea, which are reviewed in this manuscript. In summary, (1) stream and river carbon in South Korea are largely derived from the chemical weathering of soils and rocks, and organic compounds in plants and soils, strongly influenced by precipitation, wastewater treatment effluents, agricultural land use, soil water, and groundwater. (2) Unprecedentedly high Δ14C of precipitation during winter has been reported, which can directly and indirectly influence stream and river carbon. Although we cannot exclude the possibility of local contamination sources of high Δ14C, the results suggest that stream dissolved organic carbon could be older than previously thought, warranting future studies. (3) The 14C analysis has also been applied to quantify the sources of forest throughfall and PM2.5, providing new insights. The 14C data on a variety of ecosystems will be valuable not only to track the pollutants derived from fossil carbon but also to improve our understanding of climate change and provide solutions.

탄소는 생명체의 구성 요소이자 기후변화에 중요한 역할을 하는 원소로, 생태계에서 다양한 형태로 순환한다. 기후변화가 생태계에 미치는 영향을 예측하고 대응하기 위해서는 탄소순환에 대한 정량적 이해가 필수적이다. 가속질량분석기를 이용한 생태계 탄소화합물의 방사성탄소동위원소비(Δ14C) 분석은 탄소순환 연구뿐만 아니라, 화석탄소 기원 오염원을 추적하는 환경과학, 환경공학 연구에도 세계적으로 널리 활용되고 있다. 우리나라에서도 여러 연구진에 의해 하천탄소, 강수, 수관통과우, 초미세먼지, 폐수처리장 또는 하수처리장 유출수에 포함된 탄소화합물의 Δ14C가 보고되었다. 연구 결과를 종합하면, (1) 우리나라 하천탄소의 양과 성분은, 크게 보면 암석과 토양의 풍화, 육상생태계 식생과 토양에 포함된 유기물의 유출 등 다양한 기원의 탄소화합물을 포함하며, 강수량에 따른 계절적 영향을 받는 것으로 이해할 수 있으나, 지역적으로는 산업단지의 폐수나 도시의 하수처리장 방류수 유입, 농업 등 토지 이용, 깊은 토양으로부터의 유출수와 지하수 유입 등 여러 요인에 의해 크게 달라질 수 있다. (2) 하천탄소에 영향을 줄 수 있는 우리나라 강수 용존유기탄소의 Δ14C도 보고되었고, 특히 겨울철에 이례적으로 Δ14C가 높았다. 국지적 오염 가능성을 배제할 수는 없으나, 이 연구 결과는 우리가 지금까지 생태계 탄소순환을 잘못 이해하고 있을 가능성을 내포하므로, 그 원인과 범위를 추적하는 후속연구가 필요하다. (3) 우리나라 산림의 수관통과우, 초미세먼지에 포함된 탄소화합물의 Δ14C를 분석하고 화석탄소의 기여도를 파악한 연구도 보고되는 등 14C 분석 방법은 생태학과 환경과학 분야에서 새로운 시사점을 제시하는 데 활용되고 있다. 시료량과 성상에 따라 다르긴 하지만, 원소분석기와 연결된 소형 가속질량분석기를 이용하면 상대적으로 빠르고 저렴하게 시료 분석이 가능하므로, 앞으로 14C 분석을 활용한 생태학과 환경과학 연구가 활발히 이뤄지길 기대한다. 성상별 14C 분석 자료는 화석탄소 오염원을 추적하고 제거하는 방법을 제시하는 데 활용될 수 있을 뿐만 아니라 기후변화에 취약한 영역을 식별하고 적절한 대응 전략을 마련하기 위해서도 필요할 것이다.

Keywords

Acknowledgement

서울대학교 환경대학원 생지화학 실험실에 14C 분석을 위한 시료 전처리 진공라인을 설치하고 개선시키는 데 많이 기여한 이은주 박사와 이승철 연구원에게 고마움을 전합니다.

References

  1. Avery Jr, G.B., J.D. Willey and R.J. Kieber. 2006. Carbon isotopic characterization of dissolved organic carbon in rainwater: Terrestrial and marine influences. Atmospheric Environment 40(39): 7539-7545. https://doi.org/10.1016/j.atmosenv.2006.07.014
  2. Broecker, W.S. 2014. Radiocarbon. p. 257-271. In: Treatise on Geochemistry (2nd ed.) (Holland, H.D. and K.K. Turekian, eds.). Elsevier, Amsterdam.
  3. Broecker, W.S. and E.A. Olson. 1959. Lamont Radiocarbon Measurements VI. Radiocarbon 1: 111-132. https://doi.org/10.1017/S0033822200020427
  4. Cerling, T.E., J.M. Harris, B.J. MacFadden, M.G. Leakey, J. Quade, V. Eisenmann and J.R. Ehleringer. 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature 389(6647): 153-158. https://doi.org/10.1038/38229
  5. Cha, J.Y., K. Lee, S.C. Lee, E.J. Lee, K.J. Yim, I. Ryoo, M. Kim, J. Ahn, S.M. Yi, C.R. Park and N.H. Oh. 2023a. Fossil and non-fossil sources of the carbonaceous component of PM2.5 in forest and urban areas. Scientific Reports 13(1): 5486.
  6. Cha, J.Y., S.C. Lee, E.J. Lee, K. Lee, H. Lee, H.S. Kim, J. Ahn and N.H. Oh. 2023b. Canopy leaching rather than desorption of PM2.5 from leaves is the dominant source of throughfall dissolved organic carbon in forest. Geophysical Research Letters 50(17): e2023GL103731.
  7. Cha, J.Y., S.C. Lee, E.J. Lee, M. Go, K.B. Dasari, Y.H. Yim and N.H. Oh. 2020. High dissolved organic radiocarbon in precipitation during winter and its implication on the carbon cycle. Science of The Total Environment 742: 140246.
  8. Cha, J.Y., Y. Cha and N.H. Oh. 2019. The effects of tree species on soil organic carbon content in South Korea. Journal of Geophysical Research: Biogeosciences 124(3): 708-716. https://doi.org/10.1029/2018JG004808
  9. Coplen, T.B., W.A. Brand, M. Gehre, M. Groning, H.A. Meijer, B. Toman and R.M. Verkouteren. 2006. Guest Editorial After two decades a second anchor for the VPDB delta C-13 scale. Rapid Communications in Mass Spectrometry 20: 3165-3166. https://doi.org/10.1002/rcm.2727
  10. Dean, J.F., M.F. Billett, C. Murray and N.H. Garnett. 2017. Ancient dissolved methane in inland waters revealed by a new collection method at low field concentrations for radiocarbon (14C) analysis. Water Research 115: 236-244. https://doi.org/10.1016/j.watres.2017.03.009
  11. Donahue, D.J., T.W. Linick and A.T. Jull. 1990. Isotope-ratio and background corrections for accelerator mass spectrometry radiocarbon measurements. Radiocarbon 32(2): 135-142. https://doi.org/10.1017/S0033822200040121
  12. Ehn, M., J.A. Thornton, E. Kleist, M. Sipila, H. Junninen, I. Pullinen, M. Springer, F. Rubach, R. Tillmann, B. Lee, F. Lopez-Hilfiker, S. Andres, I.-H. Acir, M. Rissanen, T. Jokinen, S. Schobesberger, J. Kangasluoma, J. Kontkanen, T. Nieminen, T. Kurten, L.B. Nielsen, S. Jorgensen, H.G. Kjaergaard, M. Canagaratna, M. Dal Maso, T. Berndt, T. Petaja, A. Wahner, V.-M. Kerminen, M. Kulmala, D.R. Worsnop, J. Wildt and T.F. Mentel. 2014. A large source of low-volatility secondary organic aerosol. Nature 506(7489): 476-479. https://doi.org/10.1038/nature13032
  13. Griffith, D.R., R.T. Barnes and P.A. Raymond. 2009. Inputs of fossil carbon from wastewater treatment plants to US rivers and oceans. Environmental Science & Technology 43(15) 5647-5651. https://doi.org/10.1021/es9004043
  14. Heaton, T.J., E. Bard, C. Bronk Ramsey, M. Butzin, P. Kohler, R. Muscheler, P.J. Reimer and L. Wacker. 2021. Radiocarbon: A key tracer for studying Earth's dynamo, climate system, carbon cycle, and Sun. Science 374(6568): eabd7096.
  15. Hwang, J. 2012 Radiocarbon for studies of organic matter cycling in the Ocean. The Sea: Journal of the Korean Society of Oceanography 17(3): 189-201.(in Korean) https://doi.org/10.7850/jkso.2012.17.3.189
  16. Jin, H., T.K. Yoon, M.S. Begum, E.J. Lee, N.H. Oh, N. Kang and J.H. Park. 2018. Longitudinal discontinuities in riverine greenhouse gas dynamics generated by dams and urban wastewater. Biogeosciences 15(20): 6349-6369. https://doi.org/10.5194/bg-15-6349-2018
  17. Kang, S., J.H. Kim, J.H. Hwang, Y.S. Bong, J.S. Ryu and K.H. Shin. 2020b. Seasonal contrast of particulate organic carbon (POC) characteristics in the Geum and Seomjin estuary systems (South Korea) revealed by carbon isotope (δ13C and δ14C) analyses. Water Research 187: 116442.
  18. Kang, S., J.H. Kim, J.S. Ryu and K.H. Shin. 2020a. Dual carbon isotope (δ13C and δ14C) characterization of particulate organic carbon in the Geum and Seomjin estuaries, South Korea. Marine Pollution Bulletin 150: 110719.
  19. Kim, M. 2022. Current Status and Prospects Regarding Radiocarbon Studies in the East Sea. Ocean and Polar Research 44(1): 99-111.(in Korean)
  20. Kundu, S. and K. Kawamura. 2014. Seasonal variations of stable carbon isotopic composition of bulk aerosol carbon from Gosan site, Jeju Island in the East China Sea. Atmospheric Environment 94: 316-322. https://doi.org/10.1016/j.atmosenv.2014.05.045
  21. Law, Y., G.E. Jacobsen, A.M. Smith, Z. Yuan and P. Lant. 2013. Fossil organic carbon in wastewater and its fate in treatment plants. Water Research 47(14): 5270-5281. https://doi.org/10.1016/j.watres.2013.06.002
  22. Lee, E.J., S.C. Lee, K. Lee, J.Y. Cha, Y.N. Han, S.G. Kim and N.H. Oh. 2023a. Properties of river organic carbon affected by wastewater treatment plants. Science of The Total Environment 858: 159761.
  23. Lee, E.J., Y. Shin, G.Y. Yoo, E.B. Ko, D. Butman, P.A. Raymond and N.H. Oh. 2021a. Loads and ages of carbon from the five largest rivers in South Korea under Asian monsoon climates. Journal of Hydrology 599: 126363.
  24. Lee, E.J., Y. Shin, K. Lee, S.C. Lee, J.Y. Cha and N.H. Oh. 2023b. Comparison of DOC properties in extracted soil solutions obtained underneath Cryptomeria japonica and Quercus acutissima and its implication on stream DOC. Forest Science and Technology 19(4): 296-308. https://doi.org/10.1080/21580103.2023.2265966
  25. Lee, S.C., Y. Shin, Y.J. Jeon, E.J. Lee, J.S. Eom, B. Kim and N.H. Oh. 2021b. Optical properties and 14C ages of stream DOM from agricultural and forest watersheds during storms. Environmental Pollution 272: 116412.
  26. Lee, S.H., M.J. Kong, S.G. Lee, S.H. Park and Y.S. Kim. 2023c. Recent Spatial Distribution of Radiocarbon in Urban Tree Leaves at Gyeongju, South Korea. Radiocarbon 65(1): 201-207.
  27. Li, C., P. Chen, S. Kang, F. Yan, L. Tripathee, G. Wu, B. Qu, M. Sillanpaa, D. Yang, T. Dittmar, A. Stubbins and P.A. Raymond. 2018. Fossil fuel combustion emission from South Asia influences precipitation dissolved organic carbon reaching the remote Tibetan Plateau: Isotopic and molecular evidence. Journal of Geophysical Research: Atmospheres 123(11): 6248-6258. https://doi.org/10.1029/2017JD028181
  28. Li, C., P. Chen, S. Kang, F. Yan, X. Li, B. Qu and M. Sillanpaa. 2016. Carbonaceous matter deposition in the high glacial regions of the Tibetan Plateau. Atmospheric Environment 141: 203-208. https://doi.org/10.1016/j.atmosenv.2016.06.064
  29. Lim, S., J. Hwang, M. Lee, C.I. Czimczik, X.M. Xu and J. Savarino. 2022. Robust evidence of 14C, 13C, and 15N analyses indicating fossil fuel sources for total carbon and ammonium in fine aerosols in Seoul Megacity. Environmental Science & Technology 56(11): 6894-6904. https://doi.org/10.1021/acs.est.1c03903
  30. Lim, S., M. Lee, C.I. Czimczik, T. Joo, S. Holden, G. Mouteva, G.M. Santos, X. Xu, J. Walker, S. Kim, H.S. Kim, S. Kim and S. Lee. 2019. Source signatures from combined isotopic analyses of PM2.5 carbonaceous and nitrogen aerosols at the peri-urban Taehwa Research Forest, South Korea in summer and fall. Science of the Total Environment 655: 1505-1514. https://doi.org/10.1016/j.scitotenv.2018.11.157
  31. Marwick, T.R., F. Tamooh, C.R. Teodoru, A.V. Borges, F. Darchambeau and S. Bouillon. 2015. The age of river-transported carbon: A global perspective. Global Biogeochemical Cycles 29(2): 122-137. https://doi.org/10.1002/2014GB004911
  32. McFiggans, G., T.F. Mentel, J. Wildt, I. Pullinen, S. Kang, E. Kleist, S. Schmitt, M. Springer, R. Tillmann, C. Wu, D. Zhao, M. Hallquist, C. Faxon, M. Le Breton, A.M. Hallquist, D. Simpson, R. Bergstrom, M.E. Jenkin, M. Ehn, J.A. Thornton, M.R. Alfarra, T.J. Bannan, C.J. Percival, M. Priestley, D. Topping and A. Kiendler-Scharr. 2019. Secondary organic aerosol reduced by mixture of atmospheric vapours. Nature 565(7741): 587-593. https://doi.org/10.1038/s41586-018-0871-y
  33. McNichol, A.P. and L.I. Aluwihare. 2007. The power of radiocarbon in biogeochemical studies of the marine carbon cycle: Insights from studies of dissolved and particulate organic carbon (DOC and POC). Chemical Reviews 107(2): 443-466. https://doi.org/10.1021/cr050374g
  34. Nara, F.W., A. Imai, K. Matsushige, K. Komatsu, N. Kawasaki and Y. Shibata. 2010. Radiocarbon measurements of dissolved organic carbon in sewage-treatment-plant effluent and domestic sewage. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268(7-8): 1142-1145. https://doi.org/10.1016/j.nimb.2009.10.119
  35. O'Leary, M.H. 1981. Carbon isotope fractionation in plants. Phytochemistry 20(4): 553-567. https://doi.org/10.1016/0031-9422(81)85134-5
  36. Park, J.H., W. Hong, G. Park, K.S. Sung, K.H. Lee, Y.E. Kim, J.K. Kim, H.W. Choi, G.D. Kim and H.J. Woo. 2013. Distributions of fossil fuel originated CO2 in five metropolitan areas of Korea (Seoul, Busan, Daegu, Daejeon, and Gwangju) according to the δ14C in ginkgo leaves. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 294: 508-514.
  37. Park, Y.M., K.S. Park, H. Kim, S.M. Yu, S. Noh, M.S. Kim, J.Y. Kim, J.Y. Ahn, M.D. Lee, K.S. Seok and Y.H. Kim. 2018. Characterizing isotopic compositions of TC-C, NO3--N, and NH4+-N in PM2.5 in South Korea: impact of China's winter heating. Environmental Pollution 233: 735-744. https://doi.org/10.1016/j.envpol.2017.10.072
  38. Poschl, U. 2005. Atmospheric aerosols: composition, transformation, climate and health effects. Angewandte Chemie International Edition 44(46): 7520-7540. https://doi.org/10.1002/anie.200501122
  39. Raymond, P.A. 2005. The composition and transport of organic carbon in rainfall: Insights from the natural (13C and 14C) isotopes of carbon. Geophysical Research Letters 32(14).
  40. Raymond, P.A., J. Hartmann, R. Lauerwald, S. Sobek, C. McDonald, M. Hoover, D. Butman, R. Striegl, E. Mayorga, C. Humborg, P. Kortelainen, H. Durr, M. Meybeck, P. Ciais and P. Guth. 2013. Global carbon dioxide emissions from inland waters. Nature 503(7476): 355-359. https://doi.org/10.1038/nature12760
  41. Schulze, K., W. Borken and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry 106: 461-473. https://doi.org/10.1007/s10533-010-9526-2
  42. Shi, Z., S.D. Allison, Y. He, P.A. Levine, A.M. Hoyt, J. Beem-Miller, Q. Zhu, W.R. Wieder, S. Trumbore and J.T. Randerson. 2020. The age distribution of global soil carbon inferred from radiocarbon measurements. Nature Geoscience 13(8): 555-559. https://doi.org/10.1038/s41561-020-0596-z
  43. Stuiver, M. and H.A. Polach. 1977. Discussion reporting of 14C data. Radiocarbon 19(3): 355-363. https://doi.org/10.1017/S0033822200003672
  44. Synal, H.A., M. Stocker and M. Suter. 2007. MICADAS: A new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 259(1): 7-13. https://doi.org/10.1016/j.nimb.2007.01.138
  45. Szidat, S., M. Ruff, N. Perron, L. Wacker, H.A. Synal, M. Hallquist, A.S. Shannigrahi, K.E. Yttri, C. Dye and D. Simpson. 2009. Fossil and non-fossil sources of organic carbon (OC) and elemental carbon (EC) in Goteborg, Sweden. Atmospheric Chemistry and Physics 9(5): 1521-1535. https://doi.org/10.5194/acp-9-1521-2009
  46. Troughton, J.H. 1979. δ13C as indicator of carboxylation reactions. 140 p. In: Encyclopedia of Plant Physiology New Series, 6 (Gibbs, M. and E. Latzkoed, eds.). Springer, New York.
  47. Trumbore, S. 2009. Radiocarbon and soil carbon dynamics. Annual Review of Earth and Planetary Sciences 37: 47-66. https://doi.org/10.1146/annurev.earth.36.031207.124300
  48. Tseng, L.Y., A.K. Robinson, X. Zhang, X. Xu, J. Southon, A.J. Hamilton, R. Sobhani, M.K. Stenstrom and D. Rosso. 2016. Identification of preferential paths of fossil carbon within water resource recovery facilities via radiocarbon analysis. Environmental Science & Technology 50(22): 12166-12178. https://doi.org/10.1021/acs.est.6b02731
  49. Wang, X., T. Ge, C. Xu, Y. Xue and C. Luo. 2016. Carbon isotopic (14C and 13C) characterization of fossil-fuel derived dissolved organic carbon in wet precipitation in Shandong Province, China. Journal of Atmospheric Chemistry 73: 207-221. https://doi.org/10.1007/s10874-015-9323-3
  50. Williams, P.M. and L.I. Gordon. 1970. Carbon-13: carbon-12 ratios in dissolved and particulate organic matter in the sea. Deep Sea Research and Oceanographic Abstracts 17(1): 19-27. https://doi.org/10.1016/0011-7471(70)90085-9
  51. Xu, L., M.L. Roberts, K.L. Elder, M.D. Kurz, A.P. McNichol, C.M. Reddy, P.W. Collin and U.M. Hanke. 2021. Radiocarbon in dissolved organic carbon by UV oxidation: procedures and blank characterization at NOSAMS. Radiocarbon 63(1): 357-374. https://doi.org/10.1017/RDC.2020.102
  52. Yan, G. and G. Kim. 2017. Speciation and sources of brown carbon in precipitation at Seoul, Korea: insights from excitation-emission matrix spectroscopy and carbon isotopic analysis. Environmental Science & Technology 51(20): 11580-11587. https://doi.org/10.1021/acs.est.7b02892
  53. Zazzeri, G., X. Xu and H. Graven. 2021. Efficient sampling of atmospheric methane for radiocarbon analysis and quantification of fossil methane. Environmental Science & Technology 55(13): 8535-8541. https://doi.org/10.1021/acs.est.0c03300
  54. Zhang, Y.L., K. Kawamura, K. Agrios, M. Lee, G. Salazar and S. Szidat. 2016. Fossil and nonfossil sources of organic and elemental carbon aerosols in the outflow from Northeast China. Environmental Science & Technology 50(12): 6284-6292. https://doi.org/10.1021/acs.est.6b00351
  55. Zotter, P., I. El-Haddad, Y. Zhang, P.L. Hayes, X. Zhang, Y.H. Lin, L. Wacker, J. Schnelle-Kreis, G. Abbaszade, R. Zimmermann, J.D. Surratt, R. Weber, J.L. Jimenez, S. Szidat, U. Baltensperger and A.S.H. Prevot. 2014. Diurnal cycle of fossil and nonfossil carbon using radiocarbon analyses during CalNex. Journal of Geophysical Research: Atmospheres 119(11): 6818-6835. https://doi.org/10.1002/2013JD021114