• Title/Summary/Keyword: Particular Solution

Search Result 1,088, Processing Time 0.026 seconds

The Hazard Viz-platform for the Establishment of Heatwave Response Strategies (폭염 대응전략 수립을 위한 폭염위험도 시각화 플랫폼)

  • Kim, Miyun
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.5
    • /
    • pp.683-699
    • /
    • 2020
  • Recently, the earth's highest temperature is rising due to severe climate change and heat wave. In addition, due to the increase of elderly population over 65, the number of heat patients is also increasing. In particular, the elderly who live alone in poor living environments, the lower income group, and the socially disadvantaged, such as children and pregnant women, are exposed to the dangers of heat waves, so the government's practical measures are urgently needed. In this study, we will build a visualization platform for each level of heat wave and provide the necessary countermeasure solution according to the heat wave risk. "The Hazard Visualization Platform for Heatwave" provide not only simple information, but also a customized safety service for citizens to prevent heatwaves, respond to heatwaves, and utilize heat wave information.

An Effective Project risk Management Based on Systems Engineering (시스템엔지니어링에 기반한 효과적인 리스크 관리)

  • Kang, Top;Kim, Sung-Cheol;Oh, Jung-Taek
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.7 no.1
    • /
    • pp.43-51
    • /
    • 2011
  • SE generally defines approaching ways of conducting identification, verification and integration of an optimized product and process solution to meet customer's needs by leveraging organizational competency in engineering and management. To successfully develop a new product under mass production contract, it is important to efficiently carry out the program by ensuring that three major competencies are secured; core technology, system integration, and program management. For successful implementation of tasks in the three areas, systematic execution is called for, which requires identifying risk factors in advance. In particular, comprehensive risk management role and responsibility is required for program management. Success of a development program is determined by complex elements of human resources, organization culture, and overall competency of an organization in technology and program management, including capability of the program manager. In this paper, a risk management solution is suggested to lead a program to success with a more efficient way through actual risk management by the concept of SE around the above three areas.

A new reinforcing steel model with bond-slip

  • Kwak, H.G.;Filippou, F.C.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.4
    • /
    • pp.299-312
    • /
    • 1995
  • A new reinforcing steel model which is embedded inside a concrete element and also accounts for the effect of bond-slip is developed. Unlike the classical bond-link or bond-zone element using double nodes, the proposed model is considering the bond-slip effect without taking double nodes by incorporation of the equivalent steel stiffness. After calculation of nodal displacements, the deformation of steel at each node can be found through the back-substitution technique from the first to the final steel element using a governing equation constructed based on the equilibrium at each node of steel and the compatibility condition between steel and concrete. This model results in significant savings in the number of nodes needed to account for the effect of bond-slip, in particular, when the model is used for three dimensional finite element problems. Moreover a new nonlinear solution scheme is developed in connection with this model. Finally, correlation studies between analytical and experimental results and several parameter studies are conducted with the objective to establish the validity of the proposed model.

Micro and macro in the dynamics of dilute polymer solutions: Convergence of theory with experiment

  • Prakash, J. Ravi
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.4
    • /
    • pp.245-268
    • /
    • 2009
  • Recent developments in dilute polymer solution rheology are reviewed, and placed within the context of the general goals of predicting the complex flow of complex fluids. In particular, the interplay between the use of polymer kinetic theory and continuum mechanics to advance the microscopic and the macroscopic description, respectively, of dilute polymer solution rheology is delineated. The insight that can be gained into the origins of the high Weissenberg number problem through an analysis of the configurational changes undergone by a single molecule at various locations in the flow domain is discussed in the context of flow around a cylinder confined between flat plates. The significant role played by hydrodynamic interactions as the source of much of the richness of the observed rheological behaviour of dilute polymer solutions is highlighted, and the methods by which this phenomenon can be incorporated into a macroscopic description through the use of closure approximations and multi scale simulations is discussed.

APPLICATION OF PRODUCT OF THE MULTIVARIABLE A-FUNCTION AND THE MULTIVARIABLE SRIVASTAVA'S POLYNOMIALS

  • Kumar, Dinesh;Ayant, Frederic;Choi, Junesang
    • East Asian mathematical journal
    • /
    • v.34 no.3
    • /
    • pp.295-303
    • /
    • 2018
  • Gautam et al. [9] introduced the multivariable A-function, which is very general, reduces to yield a number of special functions, in particular, the multivariable H-function. Here, first, we aim to establish two very general integral formulas involving product of the general class of Srivastava multivariable polynomials and the multivariable A-function. Then, using those integrals, we find a solution of partial differential equations of heat conduction at zero temperature with radiation at the ends in medium without source of thermal energy. The results presented here, being very general, are also pointed out to yield a number of relatively simple results, one of which is demonstrated to be connected with a known solution of the above-mentioned equation.

ON BI-POINTWISE CONTROL OF A WAVE EQUATION AND ALGORITHM

  • Kim, Hong-Chul;Lee, Young-Il
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.739-763
    • /
    • 2000
  • We are concerned with mathematical analysis related to the bi-pointwise control for a mixed type of wave equation. In particular, we are interested in the systematic build-up of the bi-pointwise control actuators;one at the boundary and the other at the interior point simultaneously. The main purpose is to examine Hilbert Uniqueness Method for the setting of bi-pointwise control actuators and to establish relevant algorithm based on our analysis. After discussing the weak solution for the state equation, we investigate bi-pointwise control mechanism and relevant mathematical analysis based on HUM. We then proceed to set up an algorithm based on the conjugate gradient method to establish bi-pointwise control actuators to halt the system.

Utilization of an Educational Information System for Medical Education (의학교육에서의 교육정보시스템 활용)

  • Lee, Dong Yub
    • Korean Medical Education Review
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • The teaching and learning environment in medical schools is significantly different from that of other academic fields. An educational information system specifically designed for medical education could be an important solution for the unique context of medical education. In this study, the concept of the educational information system has been reviewed, and how such a system can be utilized effectively for medical education has also been explored. This paper also addresses how learning management systems for online learning could be made more effective through educational information systems. The application of flipped learning, which has been developing rapidly to improve teaching and learning, for medical education was also investigated. In conclusion, it was found that educational information systems could be a solution to various teaching and learning issues in medical schools. In particular, given that high performing students tend to enter medical schools, using educational information systems to improve the teaching and learning environment in medical school should be investigated further.

THE DELTA STANDING WAVE SOLUTION FOR THE LINEAR SCALAR CONSERVATION LAW WITH DISCONTINUOUS COEFFICIENTS USING A SELF-SIMILAR VISCOUS REGULARIZATION

  • LI, XIUMEI;SHEN, CHUN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1945-1962
    • /
    • 2015
  • This paper is mainly concerned with the formation of delta standing wave for the scalar conservation law with a linear flux function involving discontinuous coefficients by using the self-similar viscosity vanishing method. More precisely, we use the self-similar viscosity to smooth out the discontinuous coefficient such that the existence of approximate viscous solutions to the delta standing wave for the Riemann problem is established and then the convergence to the delta standing wave solution is also obtained when the viscosity parameter tends to zero. In addition, the Riemann problem is also solved with the standard method and the instability of Riemann solutions with respect to the specific small perturbation of initial data is pointed out in some particular situations.

PERFORMANCE OF RICHARDSON EXTRAPOLATION ON SOME NUMERICAL METHODS FOR A SINGULARLY PERTURBED TURNING POINT PROBLEM WHOSE SOLUTION HAS BOUNDARY LAYERS

  • Munyakazi, Justin B.;Patidar, Kailash C.
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.679-702
    • /
    • 2014
  • Investigation of the numerical solution of singularly perturbed turning point problems dates back to late 1970s. However, due to the presence of layers, not many high order schemes could be developed to solve such problems. On the other hand, one could think of applying the convergence acceleration technique to improve the performance of existing numerical methods. However, that itself posed some challenges. To this end, we design and analyze a novel fitted operator finite difference method (FOFDM) to solve this type of problems. Then we develop a fitted mesh finite difference method (FMFDM). Our detailed convergence analysis shows that this FMFDM is robust with respect to the singular perturbation parameter. Then we investigate the effect of Richardson extrapolation on both of these methods. We observe that, the accuracy is improved in both cases whereas the rate of convergence depends on the particular scheme being used.

WEAK SOLUTIONS AND ENERGY ESTIMATES FOR A DEGENERATE NONLOCAL PROBLEM INVOLVING SUB-LINEAR NONLINEARITIES

  • Chu, Jifeng;Heidarkhani, Shapour;Kou, Kit Ian;Salari, Amjad
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1573-1594
    • /
    • 2017
  • This paper deals with the existence and energy estimates of solutions for a class of degenerate nonlocal problems involving sub-linear nonlinearities, while the nonlinear part of the problem admits some hypotheses on the behavior at origin or perturbation property. In particular, for a precise localization of the parameter, the existence of a non-zero solution is established requiring the sublinearity of nonlinear part at origin and infinity. We also consider the existence of solutions for our problem under algebraic conditions with the classical Ambrosetti-Rabinowitz. In what follows, by combining two algebraic conditions on the nonlinear term which guarantees the existence of two solutions as well as applying the mountain pass theorem given by Pucci and Serrin, we establish the existence of the third solution for our problem. Moreover, concrete examples of applications are provided.