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APPLICATION OF PRODUCT OF THE MULTIVARIABLE

A-FUNCTION AND THE MULTIVARIABLE SRIVASTAVA’S

POLYNOMIALS

Dinesh Kumar, Frédéric Ayant, and Junesang Choi

Abstract. Gautam et al. [9] introduced the multivariable A-function,

which is very general, reduces to yield a number of special functions, in
particular, the multivariable H-function. Here, first, we aim to establish

two very general integral formulas involving product of the general class
of Srivastava multivariable polynomials and the multivariable A-function.

Then, using those integrals, we find a solution of partial differential equa-

tions of heat conduction at zero temperature with radiation at the ends
in medium without source of thermal energy. The results presented here,

being very general, are also pointed out to yield a number of relatively sim-

ple results, one of which is demonstrated to be connected with a known
solution of the above-mentioned equation.

1. Introduction and preliminaries

We consider a problem on outer heat conduction in a rod under certain
boundary conditions. If the thermal coefficients are constants and there is no
source of thermal energy, then the temperature U (x, t) in one-dimensional rod
0 ≤ x ≤ L satisfies the following heat equation (see [14, p. 155, Eq. (6.7.1)]):

∂U

∂t
= µ

∂2U

∂x2
(
t ∈ R+

0

)
, (1)

where U (x, t) is the temperature distribution function of a thin bar, which has
length L, and the positive constant µ = k

cρ is called the thermal diffusivity of

the material (k is thermal conductivity, c is heat capacity, ρ is density).
Here and in the following, let C, R+, and N be the sets of complex numbers,

positive real numbers, and positive integers, respectively, and let R+
0 := R+∪{0}
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and N0 := N ∪ {0}. Let the following boundary conditions be satisfied

∂U (0, t)

∂x
− hU (0, t) = 0,

∂U (L, t)

∂x
+ hU (L, t) = 0

(
h ∈ R+

)
. (2)

Here h is the heat transfer coefficient,

U (x, t) is finite as t→∞, (3)

and initial condition

U (x, 0) = f (x) . (4)

The function U (x, t) can be represented as the product of a special function
X (x) and a time function T (t) with

U (x, t) = X (x)T (t) . (5)

Substituting the differentiated forms of (5) in (1) and separating the variables
on either side of the equation results in

1

T

∂T

∂t
=

1

X

∂2X

∂x2
. (6)

Putting each side equal to a negative constant −µE2
q , it is possible to obtain

solution for T (t) and X (x).

T (t) = A e−µE
2
q t, (7)

and

X (x) = B cosEqx+D sinEqx. (8)

Using the equation (5), the general solution of (1) becomes

T (x, t) = e−µE
2
q t (m cos (bx) + n sin (Eqx)) , (9)

where m and n are real constants.
The (9) satisfies the (1), (2) and (3) on the conditions that

Eqn− hm = 0 (10)

and

Eq (n cosEqL−m sinEqL) + h (m cosEqL+ n sinEqL) = 0. (11)

From (10) and (11), we find

m/n = Eq/h, (12)

and

tanEqL =
2Eqh

E2
q − h2

. (13)

Then the solution of (1) takes the following form (see [2]):

U (x, t) =

∞∑
q=0

Rq

(
cosEqx+

h

Eq
sinEq

)
e−µE

2
q t, (14)

here the quantities U (x, t) and Rq are real numbers.
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We will take a formal initial condition

U (x, 0) = f (x) =
(

sin
πx

L

)w−1
× SM1,...,Mu

N1,...,Nu


y1
(
sin πx

L

)2ρ1
...

yu
(
sin πx

L

)2ρu
 A


Z1

(
sin πx

L

)2η1
...

Zs
(
sin πx

L

)2ηs
 ,

(15)

here U (x, 0) depends of several complex variables and parameters. Also, SM1,...,Mu

N1,··· ,Nu
[y1, . . . , yu]

are the generalized polynomials defined by (see [18])

SM1,...,Mu

N1,...,Nu
[y1, . . . , yu] =

[N1/M1]∑
K1=0

· · ·
[Nu/Mu]∑
Ku=0

(−N1)M1K1

K1!
· · ·

(−Nu)MuKu

Ku!

× B [N1,K1; · · · ;Nu,Ku] yK1
1 · · · yKu

u ,

(16)

where M1, . . . ,Mu, N1, . . . , Nu ∈ N and the coefficients B [N1,K1; · · · ;Nu,Ku]
are arbitrary real or complex constants. Gautam et al. [9] introduced the
multivariable A-function defined by

A (Z1, . . . , Zs)

:= Am,n:m1,n1;··· ;ms,ns
p,q:p1,q1;··· ;ps,qs

 Z1

...
Zs

∣∣∣∣∣∣
(
aj ;A

(1)
j , · · · , A(s)

j

)
1,p

:
(
c
(1)
j , C

(1)
j

)
1,p1

;(
bj ;B

(1)
j , · · · , B(s)

j

)
1,q

:
(
d
(1)
j , D

(1)
j

)
1,q1

;

· · · ;
(
c
(s)
j , C

(s)
j

)
1,ps

· · · ;
(
d
(s)
j , D

(s)
j

)
1,qs


:=

1

(2πω)
s

∫
L1

· · ·
∫
Ls

φ′ (t1, . . . , ts)

s∏
i=1

θ′i (ti) Z
ti
i dt1 · · · dts,

(17)
where ω =

√
−1; φ′ (t1, . . . , ts) and θ′j (tj) (j = 1, . . . , s) are given as

φ′ (t1, · · · , ts) :=

∏m
j=1 Γ

(
bj −

∑s
i=1B

(i)
j ti

) ∏n
j=1 Γ

(
1− aj +

∑s
i=1A

(i)
j tj

)
∏p
j=n+1 Γ

(
aj −

∑s
i=1A

(i)
j tj

) ∏q
j=m+1 Γ

(
1− bj +

∑s
i=1B

(i)
j tj

)
(18)

and

θ′i (ti) :=

∏ni

j=1 Γ
(

1− c(i)j + C
(i)
j ti

) ∏mi

j=1 Γ
(
d
(i)
j −D

(i)
j ti

)
∏pi
j=ni+1 Γ

(
c
(i)
j − C

(i)
j ti

) ∏qi
j=mi+1 Γ

(
1− d(i)j +D

(i)
j ti

) (19)

(
m, n, p, q, mi, ni, pi, qi ∈ N0 with m ≤ q, n ≤ p, mi ≤ qi, ni ≤ pi and zi 6= 0 (i = 1, . . . , s);

aj , bj , c
(i)
j , d

(i)
j , A

(i)
j , B

(i)
j , C

(i)
j , D

(i)
j ∈ C

)
.
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The multiple integral defining the A-function of r variables converges abso-
lutely if

|arg (Ω′i)Zi| <
1

2
η′iπ, ξ′∗i = 0, η′i ∈ R+ (i = 1, . . . , s), (20)

where

Ω′i :=

p∏
j=1

{
A

(i)
j

}A(i)
j

q∏
j=1

{
B

(i)
j

}−B(i)
j

qi∏
j=1

{
D

(i)
j

}D(i)
j

pi∏
j=1

{
C

(i)
j

}−C(i)
j

, (21)

ξ′∗i := =

 p∑
j=1

A
(i)
j −

q∑
j=1

B
(i)
j +

qi∑
j=1

D
(i)
j −

pi∑
j=1

C
(i)
j

 , (22)

η′i := <

 n∑
j=1

A
(i)
j −

p∑
j=n+1

A
(i)
j +

m∑
j=1

B
(i)
j −

q∑
j=m+1

B
(i)
j +

mi∑
j=1

D
(i)
j

−
qi∑

j=mi+1

D
(i)
j +

ni∑
j=1

C
(i)
j −

pi∑
j=ni+1

C
(i)
j

 .

(23)

For details about the nature of contours L1, · · · , Ls and other special cases of
the multivariable A-function, we refer to the papers [9, 16, 17].

In this paper, first, we aim to establish two very general integral formulas
involving product of the general class of Srivastava multivariable polynomials
and the multivariable A-function. Then, using those integrals, we find a solution
of the partial differential equation (1). The results presented here, being very
general, are also pointed out to yield a number of relatively simple results, one
of which is demonstrated to be connected with a known solution of the above-
mentioned equation. In this regard, for simplicity, in what follows, we use the
following notations.

X := m1, n1; · · · ;ms, ns; Y := p1, q1; · · · ; ps, qs; (24)

A :=
(
aj ;A

(1)
j , · · · , A(s)

j

)
1,p

:
(
c
(1)
j , C

(1)
j

)
1,p1

; · · · ;
(
c
(s)
j , C

(s)
j

)
1,ps

; (25)

B :=
(
bj ;B

(1)
j , · · · , B(s)

j

)
1,q

:
(
d
(1)
j , D

(1)
j

)
1,q1

; · · · ;
(
d
(s)
j , D

(s)
j

)
1,qs

; (26)

B′ :=
(−N1)M1K1

K1!
· · ·

(−Ns)MsKs

Ks!
B [N1,K1; · · · ;Ns,Ks] . (27)

2. Integral formulas

We begin by recalling some known integral formulas in the following lemma
(see, e.g., [10, p. 614, Eq. (1) and p. 615, Eq. (8)], and [4, 5, 6]).
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Lemma 2.1. Each of the following integral formulas holds.∫ L

0

(
sin

πx

L

)w−1
sin

πxEp
L

dx =
πΓ (w) L sin

(
πEp

2

)
2w−1 Γ

(
w±Ep+1

2

) (<(w) > 0) ; (28)

∫ L

0

(
sin

πx

L

)w−1
cos

πxEp
L

dx =
πΓ (w) L cos

(
πEp

2

)
2w−1 Γ

(
w±Ep+1

2

) (<(w) > 0) ; (29)

∫ L

0

(
cosEqx+

h

Eq
sinEqx

) (
cosEpx+

h

Ep
sinEpx

)
dx

= 2E−2q
[(
E2
q + h2

)
L+ 2l

]
δpq,

(30)

where δpq = 1 (p = q) and δpq = 0 otherwise and Ep (or Eq) is a positive root
of the following transcendental equation (see (13))

tanEL =
2Eh

E2 − h2
. (31)

We establish two integral formulas, which are useful to find a solution of the
partial differential equation (1), in the following theorems.

Theorem 2.2. Let all involved notations and conditions be given as above.
Then

∫ L

0

(
sin

πx

L

)w−1
sin

Epπx

L
SM1,...,Mu

N1,...,Nu


y1
(
sin πx

L

)2ρ1
...

yu
(
sin πx

L

)2ρu
 A


Z1

(
sin πx

L

)2η1
...

Zs
(
sin πx

L

)2ηs
 dx

=
L sin

(
Epπ
2

)
2w−1

[N1/M1]∑
K1=0

· · ·
[Nu/Mu]∑
Ku=0

B′
yK1
1 · · · yKu

u

4
∑u

i=1 ρiKi

× Am,n+1;X
p+1,q+2;Y

 Z14−η1

...
Zs4

−ηs

∣∣∣∣ (1− w − 2
∑u
i=1 ρiKi : 2η1, · · · , 2ηs) , A(

1
2 (1− w − 2

∑u
i=1 ρiKi ± Ep) : η1, · · · , ηs

)
, B

 ,

(32)
provided

<(w) > 0, min{ρi, ηl} > 0 (i = 1, . . . , u; l = 1, . . . , s),∣∣∣∣arg(Ω′i)Zi sin
(πx
L

)2ηi∣∣∣∣ < 1

2
η′iπ, ξ

′∗
i = 0, η′i ∈ R+ (i = 1, . . . , s),

and

<

(
w +

u∑
i=1

Kiρi

)
+

s∑
i=1

ηi min
16j≤mi

<

(
d
(i)
j

D
(i)
j

)
> 0.
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Proof. Firstly, express the class of multivariable polynomials SM1,...,Mu

N1,...,Nu
[·] in the

left sided integral of (32) as a series with the help of (16) and interchange the
order of summations and x-integral (which is permissible under the conditions
stated). Secondly, in the resulting expression, expressing the A-function of s-
variables in the Mellin-contour integral and interchange the order of integrations
which is justifiable due to absolute convergence of the integral involved. Thirdly,
collect the power of sin

(
πx
L

)
and evaluate the inner x-integral with the help

of (28). Finally, interpreting the Mellin-Barnes contour integral in the last
resulting expression in the multivariable A-function, we obtain the desired result
(32). �

Theorem 2.3. Let all involved notations and conditions be given as above.
Then

∫ L

0

(
sin

πx

L

)w−1
cos

Epπx

L
SM1,...,Mu

N1,...,Nu


y1
(
sin πx

L

)2ρ1
...

yu
(
sin πx

L

)2ρu
 A


Z1

(
sin πx

L

)2η1
...

Zs
(
sin πx

L

)2ηs
 dx

=
L cos

(
Epπ
2

)
2w−1

[N1/M1]∑
K1=0

· · ·
[Nu/Mu]∑
Ku=0

B′
yK1
1 · · · yKu

u

4
∑u

i=1 ρiKi

× Am,n+1;X
p+1,q+2;Y

 Z14−η1

...
Zs4

−ηs

∣∣∣∣ (1− w − 2
∑u
i=1 ρiKi : 2η1, . . . , 2ηs) , A(

1
2 (1− w − 2

∑u
i=1 ρiKi ± Ep) : η1, . . . , ηs

)
, B

 ,

(33)

provided

<(w) > 0, min{ρi, ηl} > 0 (i = 1, . . . , u; l = 1, . . . , s) ,∣∣∣∣arg (Ω′i) Zi sin
(πx
L

)2ηi∣∣∣∣ < 1

2
η′iπ, ξ′∗i = 0, η′i ∈ R+ (i = 1, . . . , s) ,

and

<

(
w +

u∑
i=1

Kiρi

)
+

s∑
i=1

ηi min
16j≤mi

<

(
d
(i)
j

D
(i)
j

)
> 0.

Proof. A similar argument as in the proof of Theorem 2.2 will establish the
result here. We omit the details.

�

3. A solution of (1)

Here we use the results in Section 2 to give a solution of (1) in the following
theorem.
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Theorem 3.1. Let all involved notations and conditions be given as above.
Then a solution of (1) is given as follows:

U (x, t) =
L

2w−1

∞∑
p=0

[N1/M1]∑
K1=0

· · ·
[Nu/Mu]∑
Ku=0

B′
yK1
1 · · · yKu

u

4
∑u

i=1 ρiKi

×
E2
p[(

E2
p + h2

)
L+ 2h

] (cosEpx+
h

Ep
sinEpx

)
(34)

× e−kE
2
pt Am,n+1;X

p+1,q+2;Y

 Z14−η1

...
Zs4

−ηs

∣∣∣∣ (1− w − 2
∑u
i=1 ρiKi : 2η1, · · · , 2ηs) , A(

1
2 (1− w − 2

∑u
i=1 ρiKi ± Ep) : η1, · · · , ηs

)
, B

 .

Proof. Setting t = 0 in (14) and using (15), we have

(
sin

πx

L

)w−1
SM1,...,Mu

N1,...,Nu


y1
(
sin πx

L

)2ρ1
...

yu
(
sin πx

L

)2ρu
 A


Z1

(
sin πx

L

)2η1
...

Zs
(
sin πx

L

)2ηs


=

∞∑
q=0

Rq

(
cosEqx+

h

Eq
sinEqx

)
.(35)

Multiply both sides of (35) by cosEpx+ h
Ep

sinEpx and integrating each side of

the resulting identity with respect to x from 0 to L, with the aid of (30), (32)
and (33), we obtain

Rq =
1

2w−1

[N1/M1]∑
K1=0

· · ·
[Nu/Mu]∑
Ku=0

B′
yK1
1 · · · yKu

u

4
∑u

i=1 ρiKi

2LE2
q[(

E2
q + h2

)
L+ 2h

]
× Am,n+1;X

p+1,q+2;Y

 Z14−η1

...
Zs4

−ηs

∣∣∣∣∣ (1− w − 2
∑u
i=1 ρiKi : 2η1, . . . , 2ηs) , A(

1−w−2
∑u

i=1 ρiKi±Ep

2 : η1, . . . , ηs

)
, B

 .(36)

Finally, substituting the Rq in (36) for the Rq in (14), we find the desired
solution (34). �

4. Special cases and remarks

The results presented here, being very general, can be reduced to yield
a number of relatively simple formulas and solutions. For example, when

A
(i)
j , B

(i)
j , C

(i)
j , D

(i)
j ∈ R and m = 0 and mj = 0, the multivariable A-function

reduces to the multivariable H-function (see [19, 20]). Then we have a known
solution of (1) (see, Chandel and Singh [3]) which is recorded in the following
theorem.
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Theorem 4.1. Let all involved notations and conditions be given as above.
Then a solution of (1) is given as follows:

U (x, t) =
L

2w−1

∞∑
p=1

[N1/M1]∑
K1=0

· · ·
[Nu/Mu]∑
Ku=0

B′
yK1
1 · · · yKu

u

4
∑u

i=1 ρiKi

2LE2
p[(

E2
p + h2

)
L+ 2h

]

× e−kE
2
pt H0,n+1;X

p+1,q+2;Y

 Z14−η1

...
Zs4

−ηs

∣∣∣∣∣ (1− w − 2
∑u
i=1 ρiKi : 2η1, · · · , 2ηs) , A(

1−w−2
∑u

i=1 ρiKi±Ep

2 : η1, · · · , ηs
)
, B

 ,

(37)

where A
(i)
j , B

(i)
j , C

(i)
j , D

(i)
j ∈ R and m = 0 and mj = 0.
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