• Title/Summary/Keyword: Particle-in-cell method

Search Result 250, Processing Time 0.027 seconds

A Study on Oxygen Reduction Reaction of PtM Electrocatalysts Synthesized by a Modified Polyol Process (수정된 폴리올 방법을 적용하여 합성한 PtM 촉매들의 산소환원반응성 연구)

  • Yang, Jongwon;Hyun, Kyuwhan;Chu, Cheunho;Kwon, Yongchai
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.78-83
    • /
    • 2014
  • In this research, we evaluated the performance and characteristics of carbon supported PtM (M = Ni and Y) alloy catalysts (PtM/Cs) synthesized by a modified polyol method. With the PtM/Cs employed as a catalyst for the oxygen reduction reaction (ORR) of cathodes in proton exchange membrane fuel cells (PEMFCs), their catalytic and ORR activities and electrical performance were investigated and compared with those of commercial Pt/C. Their particle sizes, particle distributions and electrochemically active surface areas (EAS) were measured by TEM and cyclic voltammetry (CV), while their ORR activity and electrical performance were explored using linear sweeping voltammetries with rotating disk electrodes and rotating ring-disk electrodes as well as PEMFC single cell tests. TEM and CV measurements show that PtM/Cs have the compatible particle size and EAS with Pt/C. When it comes to ORR activity, PtM/C showed the equivalent or better half-wave potential, kinetic current density, transferred electron number per oxygen molecule and $H_2O_2$ production(%) to or than commerical Pt/C. Based on results gained by the three electrode tests, when the PEMFC single cell tests were carried out, the current density measured at 0.6 V and maximum power density of PEMFC single cell adopting PtM/C catalysts were better than those adopting Pt/C catalyst. It is therefore concluded that PtM/C catalysts synthesized by modified polyol can result in the equivalent or better ORR catalytic capability and PEMFC performance to or than commercial Pt/C catalyst.

Investigation of Nanometals (Ni and Sn) in Platinum-Based Ternary Electrocatalysts for Ethanol Electro-oxidation in Membraneless Fuel Cells

  • Ponmani, K.;Kiruthika, S.;Muthukumaran, B.
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.95-105
    • /
    • 2015
  • In the present work, Carbon supported Pt100, Pt80Sn20, Pt80Ni20 and Pt80Sn10Ni10 electrocatalysts with different atomic ratios were prepared by ethylene glycol-reduction method to study the electro-oxidation of ethanol in membraneless fuel cell. The electrocatalysts were characterized in terms of structure, morphology and composition by using XRD, TEM and EDX techniques. Transmission electron microscopy measurements revealed a decrease in the mean particle size of the catalysts for the ternary compositions. The electrocatalytic activities of Pt100/C, Pt80Sn20/C, Pt80Ni20/C and Pt80Sn10Ni10/C catalysts for ethanol oxidation in an acid medium were investigated by cyclic voltammetry (CV) and chronoamperometry (CA). The electrochemical results showed that addition of Ni to Pt/C and Pt-Sn/C catalysts significantly shifted the onset of ethanol and CO oxidations toward lower potentials. The single membraneless ethanol fuel cell performances of the Pt80Sn10Ni10/C, Pt80Sn20/C and Pt80Ni20/C anode catalysts were evaluated at room temperature. Among the catalysts investigated, the power density obtained for Pt80Sn10Ni10/C (37.77 mW/cm2 ) catalyst was higher than that of Pt80Sn20/C (22.89 mW/cm2 ) and Pt80Ni20/C (16.77 mW/ cm2 ), using 1.0 M ethanol + 0.5 M H2SO4 as anode feed and 0.1 M sodium percarbonate + 0.5 M H2SO4 as cathode feed.

Small Strain Stiffness of Salt-Cemented Granular Media under Low Confining Pressure (낮은 구속압에서 고결화 혼합재의 미소변형강성)

  • Truong, Q. Hung;Byeon, Yong-Hoon;Tran, M. Khoa;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.448-456
    • /
    • 2010
  • The mechanical behavior of granular soils is affected by particle bonding including natural cementation. This study addresses a simple model of small strain stiffness and salt concentration based on wave measurements of salt-cemented particulate media. Published models of artificially cemented soils with different curing methods and several types of cementation agents are reviewed. Glass beads with the median diameter of D50 = 0.5mm are prepared in rectangular cells using the water-pluviated method in salt water with different concentrations. Piezo disk elements and bender elements embedded in the cell are used for the measurements of compressional and shear waves. The relationships between elastic wave velocities and salt concentration show an exponential function. The measured small strain stiffness matches well the predicted small strain stiffness based on micromechanics for simple cubic monosized sphere particles. This study demonstrates that the salt concentration in salt-cemented specimen may be evaluated by using elastic wave velocities.

  • PDF

Effect of Demineralized Bone Particle Gel Penetrated into Poly(lactic-co-glycolic acid) Scaffold on the Regeneration of Chondrocyte: In Vivo Experiment (PLGA 다공성 지지체에 함침시킨 DBP젤의 연골재생 효과: In Vivo 실험)

  • Lee, Yun Mi;Shim, Cho Rok;Lee, Yujung;Kim, Ha Neul;Jo, Sun A;Song, Jeong Eun;Lee, Dongwon;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.789-794
    • /
    • 2012
  • Poly(lactic-co-glycolic acid) (PLGA) has been most widely used due to its advantages such as good biodegradability, controllable rate of degradation and metabolizable degradation products. We manufactured composite scaffolds of PLGA scaffold penetrated DBP gel (PLGA/DBP gel) by a simple method, solvent casting/salt leaching prep of PLGA scaffolds and subsequent soaking in DBP gel. Chondrocytes were seeded on the PLGA/DBP gel. The mechanical strength of scaffold, histology (H&E, Safranin-O, Alcian-blue) and immunohistochemistry (collagen type I, collagen type II) were performed to elucidate in vitro and in vivo cartilage-specific extracellular matrices. It was better to keep the characteristic of chondrocytes in the PLGA/DBP gel scaffolds than that PLGA scaffolds. This study suggests that PLGA/DBP gel scaffold may serve as a potential cell delivery vehicle and a structural basis for in vivo tissue engineered cartilage.

Evaluation of antibacterial activity and cytotoxic effects of green AgNPs against Breast Cancer Cells (MCF 7)

  • Vizhi, Dhandapani Kayal;Supraja, Nookala;Devipriya, Anbumani;Tollamadugu, Naga Venkata Krishna Vara Prasad;Babujanarthanam, Ranganathan
    • Advances in nano research
    • /
    • v.4 no.2
    • /
    • pp.129-143
    • /
    • 2016
  • The present work reports a facile, rapid and an eco-friendly method for the synthesis of silver nanoparticles using Luffa acutangula (L. acutangula) leaves extract and their antibacterial and cytotoxic effects. The synthesized silver nanoparticles (AgNPs) were characterized by UV-Visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction analysis (XRD). Additionally the topography, morphology and the elemental composition of the particles were determined by Scanning Electron Microscopy (SEM) and Energy dispersive spectrophotometric (EDS) technique and the measured particle sizes from SEM micrographs are in the range of 12.5 to 24.5nm. The in-vitro antimicrobial activity of the synthesized nanoparticles was high against gram positive Staphylococcus aureus and moderate against gram negative Escherichia coli and Pseudomonas aeruginosa strains. Further, the cytotoxic effects of synthesized AgNPs were evaluated against Human Breast Cancer (MCF 7) cell line.

Polymeric Material Application for The Production of Ceramic Foam Catalyst

  • Sangsuriyan, Anucha;Yeetsorn, Rungsima;Tungkamani, Sabaithip;Sornchamni, Thana
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.21-30
    • /
    • 2015
  • Ceramic foams are prepared as positive images corresponding to a plastic foam structure which exhibits high porosities (85-90%). This structure makes the ceramic foams attractive as a catalyst in a dry reforming process, because it could reduce a high pressure drop problem. This problem causes low mass and heat transfers in the process. Furthermore, the reactants would shortly contact to catalyst surface, thus low conversion could occur. Therefore, this research addressed the preparation of dry reforming catalysts using a sol-gel catalyst preparation via a polymeric sponge method. The specific objectives of this work are to investigate the effects of polymer foam structure (such as porosity, pore sizes, and cell characteristics) on a catalyst performance and to observe the influences of catalyst preparation parameters to yield a replica of the original structure of polymeric foam. To accomplish these objectives industrial waste foams, polyurethane (PU) and polyvinyl alcohol (PVA) foams, were used as a polymeric template. Results indicated that the porosity of the polyurethane and polyvinyl alcohol foams were about 99% and 97%. Their average cell sizes were approximate 200 and 50 micrometres, respectively. The cell characteristics of polymer foams exhibited the character of a high permeability material that can be able to dip with ceramic slurry, which was synthesized with various viscosities, during a catalyst preparation step. Next, morphology of ceramic foams was explored using scanning electron microscopy (SEM), and catalyst properties, such as; temperature profile of catalyst reduction, metal dispersion, and surface area, were also characterized by $H_2-TPR$ and $H_2-TPD$ techniques, and BET, respectively. From the results, it was found that metal-particle dispersion was relatively high about 5.89%, whereas the surface area of ceramic foam catalysts was $64.52m^2/g$. Finally, the catalytic behaviour toward hydrogen production through the dry reforming of methane using a fixed-bed reactor was evaluated under certain operating conditions. The approaches from this research provide a direction for further improvement of marketable environmental friendly catalyst production.

Evaluation of Dynamic Properties through Large Triaxial Test : Development and Verification of Apparatus (대형삼축압축실험을 이용한 동적물성 산정 : 장비구축 및 검증)

  • Lee, Sung-Jin;Kim, Yun-Ki;Lee, Jun-S.;Hwang, Seon-Keun;Park, Jae-Jun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.640-649
    • /
    • 2010
  • Coarse granular materials such as gravel and crushed stone have been used as an important fill materials to large soil structure of railway, road, dam and so on. Although much studies for general soil materials have been carried out domestically, the studies for coarse materials were insufficient. Particularly, it is the level in which the study for dynamic properties(Elastic modulus and damping ratio) of coarse materials, applies the foreign country literature. This is due to the lack of large equipment for element test. But large soil structures made of coarse granular materials are generally important infrastructures. Therefore, the reliable design parameters for coarse materials should be obtained for safe and economic design, construction and maintenance. Triaxial test is the laboratory test method that is capable of controlling a confining pressure and boundary condition. In this project, we made a multi-purpose large triaxial testing system. This testing system is able to test coarse granular materials with maximum particle diameter of 100mm and support both the load control and displacement control. The load cell is installed inside of triaxial cell and the axial displacement is measured locally in order to control and measure more accurately in the small strain level. The verification test of this testing system was carried out with urethane verification specimens. So, from now on the useful information for coarse granular materials are expected to suggested by performing many tests with various material and condition.

  • PDF

Effect of Charge Carrier Lipid on Skin Penetration, Retention, and Hair Growth of Topically Applied Finasteride-Containing Liposomes

  • Lee, Sang-Im;Nagayya-Sriraman, Santhosh-Kumar;Shanmugam, Srinivasan;Baskaran, Rengarajan;Yong, Chul-Soon;Yoon, Sang-Kwon;Choi, Han-Gon;Yoo, Bong-Kyu
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.231-236
    • /
    • 2011
  • The aim of this study was to investigate the effect of charge carrier lipid on the skin penetration, retention, and hair growth of topically applied finasteride-containing liposomes. Finasteride-containing liposomes were prepared by traditional thin film hydration method using Phospholipon$^{(R)}$ 85 G and cholesterol with or without charge carrier lipid (1,2 dimyristoyl-sn-glycero-3-phosphate or 1,2-dioleoyl-trimethylammonium-propane for anionic and cationic charge, respectively). Freshly prepared finasteride-containing liposome suspension was applied on the hairless mouse skin, and skin penetration and retention were measured using Keshary-Chien diffusion cell. Non-liposomal formulation (ethanol 10% solution containing 0.5 mg/ml of FNS) was also used as a control. The amount of finasteride in the diffusion cell and mouse skin was measured by HPLC. The hair growth was evaluated using depilated male C57BL/6N mice. Mean particle size of all finasteride-containing liposomes was less than a micron, and polydispersity index revealed size homogeneity. Skin penetration and retention studies showed that significantly less amount of finasteride was penetrated when applied as anionic liposome while more amount of the drug was retained. Specifically, in liposome prepared with 10% anionic charge carrier lipid, penetration was 12.99 ${\mu}g/cm^2$ while retention was 79.23 ${\mu}g/cm^2$ after 24 h of application. In hair growth study, finasteride-containing anionic liposomes showed moderate efficacy, but the efficacy was not found when applied as cationic liposomes. In conclusion, topical application of finasteride using anionic liposome formulation appears to be useful option for the treatment of androgenetic alopecia to avoid systemic side effects of the drug.

Modified Driving Method for Reducing Address Time During Subfield Time in AC PDP (플라즈마 디스플레이 패널에서 부화면 시간동안 기입시간을 단축시키기 위한 수정된 구동파형)

  • Cho, Byung-Gwon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.135-139
    • /
    • 2015
  • The address discharge time lags are investigated in each subfield time in AC plasma display panel and a modified driving waveform is proposed to reduce the address discharge time lag by applying different additional scan voltage under no misfiring discharge production. The weak plasma discharge in AC PDP is generated by applying high positive-going ramp waveform to the scan electrode during the first reset period and that induce the production of the priming particle and wall charge. Because the wall charge becomes the wall voltage in a cell, the wall plus external address voltage produce the address discharge. However, as the wall charge in a cell is gradually disappeared as time passed, the address discharge time in the subfield time for 1 TV frame is lagged. In the first subfield time, the address discharge is faster produced than the other subfield time because the wall charge are much remained by the high positive-going ramp voltage during the reset period in the first subfield time. Meanwhile, from the second to last subfield, the address discharge production time is gradually delayed due to the dissipation of the wall charge in a cell. In this study, the address discharge time lags are measured in each subfield time and the total address discharge time lags are shortened by applying the different additional scan voltage during the address period in each the subfield time.

Synthesis of Mesoporous Titanium Dioxide Nanoparticles and Their Application into Dye Sensitized Solar Cells (다공성 산화타이타늄 나노입자 합성과 염료감응형 태양전지 응용)

  • Kim, Whidong;Ahn, Jiyoung;Kim, Soohyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.64.2-64.2
    • /
    • 2010
  • In order to improve the overall power conversion efficiency in dye-sensitized solar cells (DSSCs), it is very important to secure the sufficient surface area of photocatalytic nanoparticles layer for absorbing dye molecules. It is because increasing the amount of dye absorbed generally results in increasing the amount of light harvesting. In this work, we proposed a new method for increasing the specific surface area of photocatalytic titanium oxide ($TiO_2$) nanoparticles by using an inorganic templating method. Salt-$TiO_2$ composite nanoparticles were synthesized in this approach by spray pyrolyzing both the titanium butoxide and sodium chloride solution. After aqueous removal of salt from salt-$TiO_2$ composite nanoparticles, mesoporous $TiO_2$ nanoparticles with pore size of 2~50 nm were formed and then the specific surface area of resulting porous $TiO_2$ nanoparticle was measured by Brunauer-Emmett-Teller (BET) method. Generally, commercially available P-25 with the average primary size of ~25 nm $TiO_2$ nanoparticles was used as an active layer for dye-sensitized solarcells, and the specific surface area of P-25 was found to be ~50 $m^2/g$. On the other hand, the specific surface area of mesoporous $TiO_2$ nanoparticles prepared in this approach was found to be ~286 $m^2/g$, which is 5 times higher than that of P-25. The increased specific surface area of $TiO_2$ nanoparticles will absorb relatively more dye molecules, which can increase the short curcuit current (Jsc) in DSSCs. The influence of nanoporous structures of $TiO_2$ on the performance of DSSCs will be discussed in terms of the amount of dye molecules absorbed, the fill factor, the short circuit current, and the power conversion efficiency.

  • PDF