• Title/Summary/Keyword: Particle-free

Search Result 608, Processing Time 0.03 seconds

Quality characteristics of frozen cookie dough using rice flour of super yield Korean rice varieties (초다수성 쌀가루를 이용한 쿠키용 냉동반죽의 품질 특성)

  • Lee, Nayoung;Ha, Ki-Young
    • Food Science and Preservation
    • /
    • v.22 no.1
    • /
    • pp.63-69
    • /
    • 2015
  • The highly producible rice cultivars, hanareum and dasan 2, were prepared and investigated for their physicochemical properties, and the quality characteristics of frozen cookie dough with rice flour according to the thawing time were measured. The water, ash, crude protein, amylose, and damaged starch contents of rice flour, as well as its water holding capacity, particle size, and Hunter color value, were measured. The water, ash, and crude protein contents of the hanareum and dasan 2 rice flours were shown to range from 7.28 to 13.14%, from 0.35 to 0.39, and from 6.05 and 8.68%, respectively. The protein content of the control group was higher than that of hanareum and dasan 2 rice flours. The amylose contents of the hanareum and dasan 2 rice flour were 19.05 and 23.04%, respectively. The damaged starch content and water holding capacity of the control group were lower than those of the hanareum and dasan 2 rice flours. The particle sizes of the samples were $48.54{\sim}50.05{\mu}m$. The lightness values of the hanareum, and dasan 2 rice flour, and of the control were 93.72, 93.51 and 92.63, respectively. The quality characteristics of the gluten-free frozen cookie dough were investigated. The lightness of the cookie made with frozen cookie dough decreased according to the by thawing time, but the diameter of the cookie did not differ significantly. The hardness of the cookie made with rice frozen dasan 2 rice dough was lower than that of the cookie made with frozen hanareum rice dough.

Removal of Cs by Adsorption with IE911 (Crystalline Silicotitanate) from High-Radioactive Seawater Waste (IE911 (crystalline silicotitanate) 의한 고방사성해수폐액으로부터 Cs의 흡착 제거)

  • Lee, Eil-Hee;Lee, Keun-Young;Kim, Kwang-Wook;Kim, Ik-Soo;Chung, Dong-Yong;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.3
    • /
    • pp.171-180
    • /
    • 2015
  • This study was performed on the removal of Cs, one of the main high- radioactive nuclides contained in the high-radioactive seawater waste (HSW), by adsorption with IE911 (crystalline silicotitanate type). For the effective removal of Cs and the minimization of secondary solid waste generation, adsorption of Cs by IE911 (hereafter denoted as IE911-Cs) was effective to carry out in the m/V (ratio of absorbent weight to solution volume) ratio of 2.5 g/L, and the adsorption time of 1 hour. In these conditions, Cs and Sr were adsorbed about 99% and less than 5%, respectively. IE911-Cs could be also expressed as a Langmuir isotherm and a pseudo-second order rate equation. The adsorption rate constants (k2) were decreased with increasing initial Cs concentrations and particle sizes, and increased with increasing ratios of m/V, solution temperatures and agitation speeds. The activation energy of IE911-Cs was about 79.9 kJ/mol. It was suggested that IE911-Cs was dominated by a chemical adsorption having a strong bonding form. From the negative values of Gibbs free energy and enthalpy, it was indicated that the reaction of IE911-Cs was a forward, exothermic and relatively active at lower temperatures. Additionally, the negative entropy values were seen that the adsorbed Cs was evenly distributed on the IE911.

Study on the Melting Point Depression of Tin Nanoparticles Manufactured by Modified Evaporation Method (수정된 증발법을 이용하여 제작된 주석 나노입자의 녹는점 강하에 관한 연구)

  • Kim, Hyun Jin;Beak, Il Kwon;Kim, Kyu Han;Jang, Seok Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.8
    • /
    • pp.695-700
    • /
    • 2014
  • In the present study, the melting temperature depression of Sn nanoparticles manufactured using the modified evaporation method was investigated. For this purpose, a modified evaporation method with mass productivity was developed. Using the manufacturing process, Sn nanoparticles of 10 nm size was manufactured in benzyl alcohol solution to prevent oxidation. To examine the morphology and size distribution of the nanonoparticles, a transmission electron microscope was used. The melting temperature of the Sn nanoparticles was measured using a Differential scanning calorimetry (DSC) which can calculate the endothermic energy during the phase changing process and an X-ray photoelectron spectroscopy (XPS) used for observing the manufactured Sn nanoparticle compound. The melting temperature of the Sn nanoparticles was observed to be $129^{\circ}C$, which is $44^{\circ}C$ lower than that of the bulk material. Finally, the melting temperature was compared with the Gibbs Thomson and Lai's equations, which can predict the melting temperature according to the particle size. Based on the experimental results, the melting temperature of the Sn nanoparticles was found to match well with those recommended by the Lai's equation.

Establishment of a Safe Blasting Guideline for Pit Slopes in Pasir Coal Mine (파시르탄광의 사면안전을 위한 발파지침 수립 연구)

  • Choi, Byung-Hee;Ryu, Chang-Ha;SunWoo, Coon;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.418-426
    • /
    • 2008
  • A surface blasting method with a single tree face is currently used in Pasir Coal Mine in Indonesia. The single free face is usually the ground surface. This kind of blasting method is easy to use but inevitably causes enormous ground vibrations, which, in turn, can affect the stability of the slopes comprising the various boundaries of the open pit mine. In this regard, we decided to make a specific blasting guideline for the control of found vibrations to ensure the safety of the pit slopes and waste dumps of the mine. Firstly, we derived a prediction equation for the ground vibration levels that could be occurred during blasting in the pits. Then, we set the allowable levels of ground vibrations for the pit slopes and waste dumps as peak particle velocities of 120mm/s and 60mm/s, respectively. From the prediction equation and allowable levels, safe scaled distances were established for field use. The blast design equations for the pit slopes and waste dumps were $D_s{\geq}5\;and\;D_S{\geq}10$ respectively. We also provide several standard blasting patterns for the hole depths of $3.3{sim}8.8m$.

Effects of La Addition and Preparation Methods on Catalytic Activities for Methane Partial Oxidation Catalysts (메탄 부분산화반응 촉매에 La 첨가 및 제조방법에 따른 촉매활성에 미치는 영향)

  • Cheon, Han-Jin;Shin, Ki-Seok;Ahn, Sung-Hwan;Yoon, Cheol-Hun;Hahm, Hyun-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.2
    • /
    • pp.7-14
    • /
    • 2010
  • Synthesis gas was produced by the partial oxidation of methane. For the preparation of catalysts, Ni, known to be active in this reaction and cheap, was used as the active component and $CeO_2$, having high oxygen storage capability and high redox ability, was used as the support. The catalysts were prepared by the impregnation and urea methods. The catalyst prepared by the urea method showed about 11 times higher surface area and finer particle size than that prepared by the impregnation method. The catalysts prepared by the urea method showed higher methane conversion and synthesis gas selectivity than that prepared by the impregnation method. In this reaction, carbon deposition is a problem to be solved, so La was added to the catalyst system to reduce the carbon deposition. TGA analysis results showed that there was 2% carbon deposition with La-added catalysts and 16% with La-free catalysts. It was found that the addition of La decreases the amount of carbon deposition and prevents catalyst deactivation.

Study on the Preparations of New $^{166}Ho$-Chitosan Complex and Its Macroaggregates for a Potential Use of Internal Radiotherapy (새로운 내부 방사선 치료용 $^{166}Ho$-Chitosan 착물 및 그 응집입자의 제조에 관한 연구)

  • Park, K.B.;Kim, Y.M.;Shin, B.C.;Kim, J.R.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.3
    • /
    • pp.351-360
    • /
    • 1996
  • Chitosan is a polysaccharide of natural orgin obtained by full or partial deacetylation of chitin, a very abudant natural polymer, which has the properties of biocompatibilities, bioaffinities, and biodegradabilities. The free amino group of chitosan should be participated in forming chelate with holmium (${\beta}$-emitter). $^{166}Ho(NO_3)_3\;5H_2O$ of high radionuclidic purity of upto 99.9% was made by neutron irradiation of naturally occuring $^{166}Ho(NO_3)_3\;5H_2O$, and then reacted with the prepared chitosan solution. The effect of pH, reaction time, the concentration and viscosity of chitosan and the amount of $^{166}Ho$ on forming $^{166}Ho$-chitosan complex ($^{166}Ho$-CHICO) were investigated. $^{166}Ho$-chitosan macroaggregate($^{166}Ho$-CHIMA) was made from $^{166}Ho$-CHICO. Their physical properties such as radionuclidic purity, particle size distribution, stability in vitro and vivo were examined. Their high in vitro and vivo stability makes them attractive agents for internal radiotherapy by local administeration.

  • PDF

Diagnosis of Coloration Status and Scientific Analysis for Pigments to Used Large Buddhist Painting(Gwaebultaeng) in Tongdosa Temple (통도사 괘불탱의 채색상태 및 사용 안료의 과학적 분석)

  • Lee, Jang Jon;Ahn, Ji Yoon;Yoo, Young Mi;Lee, Kyeong Min;Han, Min Su
    • Journal of Conservation Science
    • /
    • v.33 no.6
    • /
    • pp.431-442
    • /
    • 2017
  • The purpose of this study is to reveal that coloring status and the degree of damage and the kinds of pigments used in large buddhist painting (Gwaebultaeng) of Tongdosa temple using a scientific analysis methods. It was observed that the physical damage patterns of the Gwaebultaeng were folding, lifting, fading, and peeling. Lead red, cinnabar and organic pigments were used as red pigments. Malachite and atacamite were used as green pigments, azulite and lazulite were blue pigments, lead white and talc were white pigment. It is estimated that overlapping organic pigments on the lead white were used as the yellow pigment and carbon was the black pigment. Through the analysis of the particle status of the pigments, it was confirmed that different types of raw materials were used for the green pigment, and the crystal form was easily distinguishable. Also, the dark blue color and the light blue color differed from each other depending on the size and shape of the raw material particles. Yellow and purple colors were organic pigments which did not have a graininess. The yellow and purple colors were organic pigments free from the graininess, and the pigments of dark red pigments was found to be mixed with the orange color pigments and carbon particles.

Study of Composite Adsorbent Synthesis and Characterization for the Removal of Cs in the High-salt and High-radioactive Wastewater (고염/고방사성 폐액 내 Cs 제거를 위한 복합 흡착제 합성 및 특성 연구)

  • Kim, Jimin;Lee, Keun-Young;Kim, Kwang-Wook;Lee, Eil-Hee;Chung, Dong-Yong;Moon, Jei-Kwon;Hyun, Jae-Hyuk
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.1
    • /
    • pp.1-14
    • /
    • 2017
  • For the removal of cesium (Cs) from high radioactive/high salt-laden liquid waste, this study synthesized a highly efficient composite adsorbent (potassium cobalt ferrocyanide (PCFC)-loaded chabazite (CHA)) and evaluated its applicability. The composite adsorbent used CHA, which could accommodate Cs as well as other molecules, as a supporting material and was synthesized by immobilizing the PCFC in the pores of CHA through stepwise impregnation/precipitation with $CoCl_2$ and $K_4Fe(CN)_6$ solutions. When CHA, with average particle size of more than $10{\mu}m$, is used in synthesizing the composite adsorbent, the PCFC particles were immobilized in a stable form. Also, the physical stability of the composite adsorbent was improved by optimizing the washing methodology to increase the purity of the composite adsorbent during the synthesis. The composite adsorbent obtained from the optimal synthesis showed a high adsorption rate of Cs in both fresh water (salt-free condition) and seawater (high-salt condition), and had a relatively high value of distribution coefficient (larger than $10^4mL{\cdot}g^{-1}$) regardless of the salt concentration. Therefore, the composite adsorbent synthesized in this study is an optimized material considering both the high selectivity of PCFC on Cs and the physical stability of CHA. It is proved that this composite adsorbent can remove rapidly Cs contained in high radioactive/high salt-laden liquid waste with high efficiency.

Factors Affecting Lipid Oxidation In Full-fat Soy Flour (전지 대부분의 유지산화에 미치는 인자)

  • Kim, Chul-Jai;Lee, C.C.;Johnson, L.A.
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.732-738
    • /
    • 1991
  • Corsoy 79 soybeans were ground into 8-(coarse) and 24-mesh (fine) full-fat soy flours. From the particle size analysis, the 8-mesh full-fat soy flours were found to have larger values for geometric mean diameter and geometric standard deviation. However, the distribution moduli of coarse and fine soy flours were similar and indicated soybeans were nearly 'brittle'. Development of hydrolytic and oxidative rancidities of coarsely and finely ground full-fat soy flours were followed from grinding to 24 hrs later. No increases in peroxide value and conjugated dienes in the oil and hexanal content in the headspace of the flour were observed when the moisture was 10.7% or less. At 14.9% moisture and above, lipid oxidation increased with increased moisture content and storage time. Free fatty acid contents increased slightly at all moisture contents. However, hydrolysis did not exceed 0.06% over the moisture range of 4 to 18%, which is of little practical significance. Fine grinding increased oxidative and hydrolytic rancidities, especially at 14.9% moisture and above. these findings indicate that raw soybeans can be ground to full-fat soy flours and stored up to 24 hrs without undergoing significant lipid and flavor deterioration if the moisture content is 11% or less.

  • PDF

Characterization of Cement Waste Form for Final Disposal of Decommissioned Concrete Waste (해체 콘크리트 폐기물 최종처분을 위한 시멘트 고화체 특성 평가)

  • Lee, Yoon Ji;Hwang, Doo Seong;Lee, Ki Won;Jeong, Gyeong Hwan;Moon, Jei Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.4
    • /
    • pp.271-280
    • /
    • 2013
  • Since the decommissioning of nuclear plants and facilities, large quantities of slightly contaminated concrete waste have been generated. In Korea, the decontamination and decommissioning of the KRR-1, 2 at the KAERI have been under way. And concrete waste was generated about 800 drums of 200 L. The conditioning of concrete waste is needed for final disposal. The concrete waste is conditioned as follows: mortar using coarse and fine aggregates is filled void space after concrete rubble pre-placement into 200 L drum. Thus, this research has developed an optimizing mixing ratio of concrete waste, water, and cement and has evaluated characteristics of a cement waste form to meet the requirements specified in disposal site specific waste acceptance criteria. The results obtained from compressive strength test, leaching test, thermal cycling test of cement waste forms conclude that the concrete waste, water, and cement have been suggested to have 75:15:10wt% as the optimized mixing ratio. Also, the compressive strength of cement waste form was satisfied that including fine powder up to maximum 40wt% in concrete debris wastes about 75%. As a result of scale-up test, the mixture of concrete waste, water, and cement is 75:10:15wt% meet the satisfied compressive strength because the free water increased with and increased in particle size.