DOI QR코드

DOI QR Code

수정된 증발법을 이용하여 제작된 주석 나노입자의 녹는점 강하에 관한 연구

Study on the Melting Point Depression of Tin Nanoparticles Manufactured by Modified Evaporation Method

  • 김현진 (한국항공대학교 항공우주 및 기계공학부) ;
  • 백일권 (한국항공대학교 항공우주 및 기계공학부) ;
  • 김규한 (한국항공대학교 항공우주 및 기계공학부) ;
  • 장석필 (한국항공대학교 항공우주 및 기계공학부)
  • Kim, Hyun Jin (School of Mechanical and Aerospace Engineering, Korea Aerospace Univ.) ;
  • Beak, Il Kwon (School of Mechanical and Aerospace Engineering, Korea Aerospace Univ.) ;
  • Kim, Kyu Han (School of Mechanical and Aerospace Engineering, Korea Aerospace Univ.) ;
  • Jang, Seok Pil (School of Mechanical and Aerospace Engineering, Korea Aerospace Univ.)
  • 투고 : 2014.03.24
  • 심사 : 2014.05.22
  • 발행 : 2014.08.01

초록

본 논문에서는 수정된 증발법을 이용하여 제작된 주석(Sn) 나노입자의 녹는점 강하 특성에 대한 연구를 진행하였다. 이를 위해 대량생산이 가능한 수정된 증발법을 이용하여 10nm 급 주석 나노입자를 제조하였다. 주석 나노입자 표면의 산화 방지를 위하여 Benzyl Alcohol 을 기본유체로 사용하였으며, 제작된 주석 나노입자의 형상과 입자크기를 알아보기 위하여 투과전자현미경(TEM)을 사용하였다. 제작된 나노입자의 녹는점은 시차주사열량계(DSC)를 통해 측정하였으며, 광전자분광분석기(XPS)를 사용하여 제작된 주석 나노입자의 성분 분석을 진행 하였다. 주석 나노입자의 녹는점은 주석의 녹는점인 $232^{\circ}C$보다 44% 감소한 $129^{\circ}C$로 측정되었다. 녹는점 측정 결과는 Gibbs-Thomson 식 및 Lai 의 식과 비교하였으며, 그 결과 Lai의 식이 실험결과를 잘 예측함을 확인할 수 있었다.

In the present study, the melting temperature depression of Sn nanoparticles manufactured using the modified evaporation method was investigated. For this purpose, a modified evaporation method with mass productivity was developed. Using the manufacturing process, Sn nanoparticles of 10 nm size was manufactured in benzyl alcohol solution to prevent oxidation. To examine the morphology and size distribution of the nanonoparticles, a transmission electron microscope was used. The melting temperature of the Sn nanoparticles was measured using a Differential scanning calorimetry (DSC) which can calculate the endothermic energy during the phase changing process and an X-ray photoelectron spectroscopy (XPS) used for observing the manufactured Sn nanoparticle compound. The melting temperature of the Sn nanoparticles was observed to be $129^{\circ}C$, which is $44^{\circ}C$ lower than that of the bulk material. Finally, the melting temperature was compared with the Gibbs Thomson and Lai's equations, which can predict the melting temperature according to the particle size. Based on the experimental results, the melting temperature of the Sn nanoparticles was found to match well with those recommended by the Lai's equation.

키워드

참고문헌

  1. Sun, J. and Simon, S. L., 2007, "The Melting Behavior of Aluminum Nanoparticles," Thermochimica Acta, Vol 463, No.1-2, pp. 32-40. https://doi.org/10.1016/j.tca.2007.07.007
  2. Takagi, M., 1954, "Electron-Diffraction Study of Liquid-Solid Transition of Thin Metal Films," Journal of the Physical Society of Japan , Vol. 9, No. 3.
  3. Sambles, J. , 1971, "An Electron Microscope Study of Evaporation Gold Particles: the Kelvin Equation for Liquid Gold and the Lowering of the Melting Point of Solid Gold Particles," Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 324, No. 1558, pp. 339-351. https://doi.org/10.1098/rspa.1971.0143
  4. Buffat, P. and Borel, J. , 1976, "Size Effent on the Melting Temperature of Gold Particles," Physical Review A, Vol. 13, No. 6, pp. 2287-2298. https://doi.org/10.1103/PhysRevA.13.2287
  5. Coombes, C.J. , 1972, "The Melting of Small Particles of Lead and Indium," Journal of Physics, Vol. 2, pp. 441. https://doi.org/10.1088/0305-4608/2/3/013
  6. Eckert, J., Holzer, J. C., Ahn, C. C., Fu, Z. and Johnson, W. L., 1993, "Melting Behavior or Nanocrystalline Aluminum Powders," Nanostructured Materials, Vol. 2, pp. 407-413. https://doi.org/10.1016/0965-9773(93)90183-C
  7. Lai, S., Guo, J., Petrova, V., Ramanath, G. and Allen, L., 1996, "Size-Dependent Melting Properties of Small tin Particles: Nanocalorimetric Measurements," Physical review Letters, Vol 77, No.1, pp. 99-102. https://doi.org/10.1103/PhysRevLett.77.99
  8. Lai, S. L., Carlsson, J. R. A. and Allen, L. H. , 1998, "Melting Point Depression of Al Clusters Generated During the Early Stages of Film Growth: Nanocalorimetry Measurements," Applied Physics Letters, Vol. 72, pp. 1098-1100. https://doi.org/10.1063/1.120946
  9. Zhang, M., Efremov, M. Y., Schiettekatte, F., Olson, E. A., Kwan, A. T., Lai, S. L., Wisleder, T., Greene, J. E. and Allen, L. H., 2000, "Size-Dependent Melting Point Depression of Nanostructures: Nanocalorimetric Measurements," Physical Review B, Vol. 62, No. 15, pp. 10548. https://doi.org/10.1103/PhysRevB.62.10548
  10. Bachels, T. and Guntherodt, H. , 2000, "Melting of Isolated Tin Nanoparticles," Physical Review Letters, Vol. 85, pp. 1250-1253. https://doi.org/10.1103/PhysRevLett.85.1250
  11. Hsiao, L. and Duh, J., 2005, "Synthesis and Characterization of Lead-free Solders with Sn-3.5 AgxCu (x= 0.2, 0.5, 1.0) Alloy Nanoparticles by the Chemical Reduction Method," Journal of the Electrochemical Society, Vol. 152, p. 105.
  12. Jiang, H., Moon, K.-S., Dong, H., Hua, F. and Wong, C. P. , 2006, "Size-Dependent Melting Properties of Tin Nanoparticles," Chemical Physics Letters, Vol. 429, No. 4-6, pp. 492-496. https://doi.org/10.1016/j.cplett.2006.08.027
  13. Jiang, H., Moon, K., Hua, F. and Wong, C. , 2007, "Synthesis and Thermal and Wetting Properties of Tin/Silver Alloy Nanoparticles for Low Melting Point Lead-Free Solders," Chemistry of Materials, Vol. 19, No. 18, pp. 4482-4485. https://doi.org/10.1021/cm0709976
  14. Zou, C. D., Gao, Y. L., Yang, B. and Zhai, Q. J., 2009, "Melting Temperature Depression of Sn-0.4Co-0.7Cu Lead-Free Solder Nanoparticles," Soldering and Surface Mount Technology, Vol. 21, pp. 9-13. https://doi.org/10.1108/09540910910947417
  15. Gao, Y., Zou, C., Yang, B., Zhai, Q., Liu, J., Zhuravlev, E. and Schick, C. , 2009, "Naoparticles of SnAgCu Lead-Free Solder Alloy with an Equivalent Melting Temperature of SnPb Solder Alloy," Journal of Alloy and Compounds, Vol. 484, pp. 777-781. https://doi.org/10.1016/j.jallcom.2009.05.042
  16. Zou, C., Gao, Y., Yang, B. and Zhai, Q., 2010, "Melting and Solidification Properties of the Nanoparticles of Sn3.0Ag0.5Cu Lead-Free Solder," Materials Charavterization, Vol. 61, pp. 474-480. https://doi.org/10.1016/j.matchar.2010.02.004
  17. Kostic, M. M., Golubovic, M., Hull, J. R. and Choi, S. U. S., 2006, "One-step Method for the Production of Nanofluids," U. S. Patent Application, No. 11, 456,944
  18. Eastman, J. A., Choi, S. U. S., Li, S. and Thompson, L. J., 1997, "Enhanced Thermal Conductivity through the Development of Nanofluids," Proc. Symp. Nanophase and Nanocomposite Mater. II, Vol. 457, pp. 2-11.
  19. Moulder, J. F., Stickle, W. F., Sobol, P. E. and Bornben, K. D., 1992, Hand Book of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, United States of America, p. 118
  20. Gibbs, J. W., 1948, The Collected Works of J. Willard Gibb, Yale University Press, New Haven