• Title/Summary/Keyword: Particle-free

Search Result 608, Processing Time 0.024 seconds

Fabrication and Characterization of Optically Encoded Porous Silicon Smart Particles

  • Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.7 no.4
    • /
    • pp.221-226
    • /
    • 2014
  • Optically encoded porous silicon smart particles were successfully fabricated from the free-standing porous silicon thin films using ultrasono-method. DBR PSi was prepared by an electrochemical etch of heavily doped $p^{{+}{+}}$-type silicon wafer. DBR PSi was prepared by using a periodic pseudo-square wave current. The surface-modified DBR PSi was prepared by either thermal oxidation or thermal hydrosilylation. Free-standing DBR PSi films were generated by lift-off from the silicon wafer substrate using an electropolishing current. Free-standing DBR PSi films were ultrasonicated to create DBR-structured porous smart particles. Optical characteristics of porous smart particles were measured by FT-IR spectroscopy. The surface morphology of porous smart particles was determined by FE-SEM.

Characteristics of sloshing load and flow inside a tank with cylinder structures (실린더 구조물을 설치한 탱크 내부의 슬로싱 하중과 유동 특성)

  • Ki Jong Kim;Hyun-Duk Seo;Daegyoum Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.31-39
    • /
    • 2023
  • Sloshing of the fluid having a free surface produces an impact force on a tank wall subjected to external excitation. This paper investigates the effect of cylindrical structures in a rectangular sloshing tank under translational harmonic excitations. By varying the number of installed cylinders in the tank, the characteristics of the free-surface deformation is experimentally observed, and the peak pressure on the tank wall is extracted by threshold values. To predict the peak pressure, the numerical simulation is also conducted using smoothed particle hydrodynamics (SPH), and the peak values are compared with the experimental results. Furthermore, pressure and velocity fields in the tank and free-surface shape are analyzed at the moment of impact.

Characteristics of Particle Separation in Suspension using an Ultrasonic Standing Wave

  • Shin, Beom-Soo;Danao, Mary-Grace C.
    • Journal of Biosystems Engineering
    • /
    • v.37 no.2
    • /
    • pp.113-121
    • /
    • 2012
  • Purpose: Particle separation in solution is one of important process in a unit operation as well as in an extract preparation for biosensors. Contrary to centrifuge-type of mesh-type filter, using an ultrasonic standing wave make the filtering process continuous and free from maintenance. It is needed to investigate the characteristics of particle movement in the ultrasonic standing wave field. Methods: Through the computer simulation the effects of major design and driving parameters on the alignment characteristics of particles were investigated, and a cylindrical chamber with up-stream flow type was devised using two circular-shape PZTs on both sides of the chamber, one for transmitting ultrasonic wave and the other for just reflecting it. Then, the system performance was experimentally investigated as well. Results: The speed of a particle to reach pressure-node plane increased as the acoustic pressure and size of particle increased. The maximum allowable up-stream flow rate could be calculated as well. As expected, exact numbers of pressure-node planes were well formed at specific locations according to the wavelength of ultrasonic wave. As the driving frequency of PZT got close to its resonance frequency, the bands of particles were observed clearer, which meant the particles were trapped into narrower space. Higher excitation voltages to the PZT produced a greater acoustic force with which to trap particles in the pressure-node planes, so that the particles gathered could move upwards without disturbing their alignments even at a higher inlet flow rate. Conclusions: This research showed the feasibility of particle separation in solution in the continuous way by an ultrasonic standing wave. Further study is needed to develop a device to collect or harvest those separated particles.

Preparation and Evaluation of Aclarubicin Liposome using Microfluidizer (마이크로플루다이저를 이용한 아클라루비신 리포좀의 제조 및 평가)

  • Park, Mork-Soon;Park, Jin-Kyu;Lee, Gye-Won;Baek, Myoung-Ki;Jee, Ung-Kil
    • YAKHAK HOEJI
    • /
    • v.42 no.3
    • /
    • pp.265-274
    • /
    • 1998
  • In order to attain a sustained release at targeted organs in a prolonged time which can reduce the side effects and maximize the therapeutic effect, aclarubicin (ACL) was entrap ped into liposomes of different lipid compositions using Microfluidizer, and dry liposomes were prepared by lyophilization. The dry aclarubicin-entrapped liposomes were evaluated in terms of mean particle size and size distribution, entrapment efficiency and in vitro drug release profile. The Entrapment efficiency of liposome, when the concentration of aclarubicin and lipid were 0.5 to 1.0mg/ml and $200{\mu}mol$/ml, respectively, was over 80% using Microfluidizer, in contrast to 70% of entrapment efficiency using hand-shaking method. Mean particle size and size distribution of aclarubicin-entrapped liposomes of various lipid compositions did not change considerably by the freeze drying. The range of particle size was between 80 and 200nm. Among aclarubicin-entrapped liposomes, ACL-liposome of PC/DPPC/CH0L/TA displayed the most significant sustained release. The addition of DPPC appeared to be favorable for the control of release. In general, aclarubicin entrapped in liposomes was less stable than free aclarubicin either in pH 7.4 phosphate buffer or in human plasma. Formulation I($t_{1/2}$, 20.3 hr) devoid of lipid additive was the most unstable in the phosphate-buffer solution while formulation II($t_{1/2}$, 40.7 hr) with cardiolipin was the most stable. Half lives of aclarubicin-entrapped liposomes in human plasma were 43.2, 50.7, 35.9 and 35.3 hr for formulation I. II, III and IV, respectively, in contrast to 57.8 hr for free aclarubicin.

  • PDF

The Effect of the Size of Coal Particles on Gasification Reactions (석탄입자 크기가 가스화에 미치는 영향)

  • Cho, Seok-Yeon;Seo, Kyung-Won
    • Journal of Energy Engineering
    • /
    • v.6 no.1
    • /
    • pp.77-86
    • /
    • 1997
  • In this study, numerical computations were performed to scrutinize the effect of the size of coal particles on reactive flow fields and concentration distribution of product gases for five cases with four different particle sizes (40 $\mu\textrm{m}$, 60 $\mu\textrm{m}$, 100 $\mu\textrm{m}$, 120 $\mu\textrm{m}$, 140 $\mu\textrm{m}$) in an axisymmetric cylindrical coal gasifier in which Alaska Usibelli subbituminous coals were gasified. Predictions showed that coal particle size affected the concentration distribution of product gases. When coals of 100 $\mu\textrm{m}$ were gasified, the maximum average concentrations of major products, H$_2$and CO, were predicted at the exit of the gasifier. The average mole fractions of CO and H, were shown to be 0.62, and 0.16 (dry basis, inert free), respectively. The cold gas efficiency of 83% was also predicted for the same particle size of 100 $\mu\textrm{m}$.

  • PDF

Effect of Drug Loading on the Physicochemical Properties and Stability of Cationic Lipid-based Plasmid DNA Complexes

  • Jeong, Ui-Hyeon;Jung, Ji-Hye;Davaa, Enkhzaya;Park, Se-Jin;Myung, Chang-Seon;Park, Jeong-Sook
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.5
    • /
    • pp.339-343
    • /
    • 2009
  • Recently, co-delivery of drug and gene has been attempted for higher therapeutic effects of anticancer agents. In this study, cationic liposomes were prepared using 1,2-dioleoyl-3-trimethylammoniopropane (DOTAP) as a cationic lipid to investigate the effect of drug loading on the physicochemical characteristics of cationic liposomes/DNA complexes. The complex formation between cationic liposomes and negatively charged plasmid DNA was confirmed and the protection from DNase was observed. Particle size of complexes was reduced not by drug loading, but by the increased ratio of cationic lipid to plasmid DNA. Meanwhile, zeta potential of complex was increased by the addition of cationic liposomes to complexes and the effect of drug loading on the zeta potential was not much higher than on particle size. Gel retardation of complexes was indicated when the complexation weight ratios of cationic lipid to plasmid DNA were higher than 24:1 for drug free complexes and 20:1 for drug loaded ones, respectively. Agarose gel retardation showed the similar complexation between plasmid DNA and drug free liposomes or drug loaded liposomes. Both complexes protected plasmid DNA from DNase independent of complexation temperature. From the results, drug loading may affect not the complex formation of cationic liposomes and plasmid DNA, but the particle size of complex.

Flow Characteristics of Sweeping Jet Issued by a Feedback-free Fluidic Oscillator (피드백이 없는 유체진동기에서 분사되는 Sweeping jet의 유동 특성)

  • Nam, Sanghyun;Kim, Donguk;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.1
    • /
    • pp.50-58
    • /
    • 2020
  • This paper presents flow characteristics of a sweeping jet issued by a feedback-free fluidic oscillator. Overall flow characteristics of feedback-free sweeping jet (FFSJ) were analyzed using flow visualization. The feedback-free sweeping jet has a sinusoidal external flow pattern. The oscillating frequency of the FFSJ is three times higher than that of a conventional sweeping jet at the same Reynolds number. Flow structure and turbulence characteristics were investigated using time-resolved particle image velocimetry (TR-PIV). In instantaneous velocity fields, the flow did not stay at ends but changed the direction continuously in contrast to the conventional sweeping jet. Velocity distributions at each plane which were extracted from mean velocity field has Gaussian distribution, which is similar with a circular jet. The sweep angles were constant as 45° at all Reynolds numbers in the high flow rate regime.

FORMULATION AND STABILITY TEST OF ANTIAGING CREAM CONTAINING METHANOL FRACTION OIL OF PANGIUM EDULE.REINW. AS A RADICAL SCAVENGER AGENT

  • Djajadisastra, J.;Anwar, E.;Milani, E.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.303-306
    • /
    • 2003
  • Indonesia is a tropical country having a temperature range of 25-35$^{\circ}C$ which can affect the skin and causes damages like aging. This aging process is due, at least, to free radical reactions. For this reason, many attempts had been done to find out creams containing natural antioxidant compound which have a potential of free radical scavenger. Kluwek, a fermented form of foot ball fruit or picung (Pangium edule.Reinw), had been proved to contain antioxidant compound in its methanol fraction oil to which antiaging cream was formulated. Stability evaluation was conducted for cream with Kluwek oil compared to base cream, including organoleptic (colour and odour), pH, viscosity, particle size, centrifugation test and flow characteristics either in room temperature (27$^{\circ}C$) or stress condition (4$^{\circ}C$ and 5$0^{\circ}C$) for 8 weeks continuously, and six times cycling test at 4$^{\circ}C$ and 5$0^{\circ}C$ every 24 hours. The results showed that cream with Kluwek oil and base cream were stable at temperature 27 and 4$^{\circ}C$, cycling test and centrifugation test, but not stable at 5$0^{\circ}C$. Free radical evaluation was done by Electron Spin Resonance and the result showed that cream with Kluwek oil had less free radicals compared to base cream.

  • PDF

Studies on Manufacturing Wood Particle-Polypropylene Fiber Composite Board

  • Lee, Chan-Ho;Eom, Young-Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.47-58
    • /
    • 2001
  • For finding both ways of recycling the wood and plastic wastes and solving the problem of free formaldehyde gas emission through manufacturing wood particle-polypropylene fiber composite board without addition of formaldehyde-based thermosetting resin adhesive, control particleboards and nonwoven web composite boards from wood particle and polypropylene fiber formulation of 50 : 50, 60 : 40, and 70 : 30 were manufactured at density levels of 0.5, 0.6, 0.7, and 0.8 g/$cm^3$, and were tested both in the physical and mechanical properties according to ASTM D 1037-93. In the physical properties, control particleboard had significantly higher moisture content than composite board. In composite board, moisture content decreased with the increase of target density only in the board with higher content of polypropylene fiber and also appeared to increase with the increase of wood particle content at a given target density. Control particleboard showed significantly greater water absorption than composite board and its water absorption decreased with the increase of target density. In composite board, water absorption decreased with the increase of target density at a given formulation but increased with the increase of wood particle content at a given target density. After 2 and 24 hours immersion, control particleboard was significantly higher in thickness swelling than composite board and its thickness swelling increased with the increase of target density. In composite board, thickness swelling did not vary significantly with the target density at a given formulation but its thickness swelling increased as wood particle content increased at a given target density. Static bending MOR and MOE under dry and wet conditions increased with the increase of target density at a given formulation of wood particle and polypropylene fiber. Especially, the MOR and MOE under wet condition were considerably larger in composite board than in control particleboard. In general, composite board showed superior bending strength properties to control particleboard, And the composite board made from wood particle and polypropylene fiber formulation of 50 : 50 at target density of 0.8 g/$cm^3$ exhibited the greatest bending strength properties. Though problems in uniform mixing and strong binding of wood particle with polypropylene fiber are unavoidable due to their extremely different shape and polarity, wood particle-polypropylene fiber composite boards with higher performance, as a potential substitute for the commercial particleboards, could be made just by controlling processing variables.

  • PDF

Characteristics of Workers' Exposure to Aerosolized Particles during the Production of Carbon Nanotube-enabled Composites (탄소나노튜브 복합체 취급 작업자의 공기 중 입자상 물질 노출 특성)

  • Kwon, Jiwoon;Kim, Sungho;Jang, Miyeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Objectives: The purpose of this case study is to assess workers' exposure to carbon nanotubes(CNTs) and characterize particles aerosolized during the process of producing CNT-enabled polytetrafuoroethylene(PTFE) composites at a worksite in Korea. Methods: Personal breathing zone and area samples were collected for determining respirable concentrations of elemental carbon(EC) using NIOSH(National Institute for Occupational Safety and Health) Method 5040. Personal exposure to nano-sized particles was measured as the number concentration and mean diameter using personal ultrafine particle monitors. The number concentration by particle size was measured using optical particle sizers(OPS) and scanning mobility particle sizers(SMPS). Transmission electron microscopy (TEM) area samples were collected on TEM grids and analyzed to characterize the size, morphology, and chemistry of the particles. Results: Respirable EC concentrations ranged from 0.04 to 0.24 ㎍/㎥, which were below 23% of the exposure limit recommended by NIOSH and lower than background concentrations. Number concentrations by particle size measured using OPS and SMPS were not noticeably elevated during CNT-PTFE composite work. Instant increase of number concentrations of nano-sized particles was observed during manual sanding of CNT-PTFE composites. Both number concentrations and mean diameters did not show a statistically significant difference between workers handing CNT-added and not-added materials. TEM analyses revealed the emission of free-standing CNTs and CNT-PTFE aggregate particles from the powder supply task and composite particles embedded with CNTs from the computer numerical control(CNC) machining task with more than tens of micrometers in diameter. No free-standing CNT particles were observed from the CNC machining task. Conclusions: Significant worker exposure to respirable CNTs was not found, but the aerosolization of CNTs and CNT-embedded composite particles were observed during handing of CNT-PTFE powders and CNC machining of CNT-PTFE composites. Considering the limited knowledge on the toxicity of CNTs and CNT composite particles to date, it seems prudent to take a precautionary approach for the protection of workers' health.