• Title/Summary/Keyword: Particle velocity

Search Result 1,620, Processing Time 0.033 seconds

Conversion Formula from Peak Particle Velocity to Vibration Level and Some Inappropriate Cases (발파 진동속도의 진동레벨 환산과 적용 오류 사례)

  • Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.33 no.1
    • /
    • pp.21-26
    • /
    • 2015
  • Several conversion formulas to convert peak particle velocity to vibration label were studied for their validity and applied to environmental dispute cases. Special cases like structural damage by blast vibration was accepted while mental damage was not accepted were discussed. Results show that inadequate formula was used or construction damage caused by subsidence or disturbance of ground were misidentified as vibration damage for some cases.

Control of Motion of Charged Micro-Particle by In-plane Field (수평전기장에 의해 대전된 입자의 운동제어)

  • Baik, In-Su;Jung, Byoung-Sun;Lim, Young-Jin;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.514-517
    • /
    • 2004
  • We have studied motion of micro-particle immersed in liquid crystal (LC) controlled by in-plane field, which is an important technology in the electro-phoretic display (EPD). In the EPD on and off states are decided by movement of these charged particles and response time is influenced by moving velocity of charged particles. In addition, the velocity can be controlled by intensity of applied voltage such that the higher the applied voltage, the faster velocity of particles become. In this study, we investigated particles's motion as functions of applied voltage, temperature of LC, rubbing direction,

  • PDF

APPLICATION OF SOUND INTENSITY METHOD TO NOISE CONTROL ENGINEERING AND BUILDING ACOUSTICS

  • Tachibana, Hideki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.7-15
    • /
    • 1995
  • Sound pressure and particle velocity are the most essential quantities prescribing a sound field; they correspond to voltage and electric current respectively, in electric system. As electric power is the product of voltage and electric current, sound intensity is the product of sound pressure and particle velocity and it means the acoustic power passing through a unit area in a sound field. Although the definition of sound intensity is very simple as mentioned above, the method of measuring this quantity has not been realized for a long time, because it has been very difficult to measure the particle velocity simultaneously with the sound pressure. Owing to the recent development of such technologies as transducer production and digital signal processing, it has finally been realized. According to the sound intensity(SI) method, the sound power flow in an arbitrary sound field can be directly measured as a vector quantify. In this paper, the principle of the SI method is briefly explained at first and some examples of its application made in the author's laboratory are introduced.

  • PDF

Particle Velocity Equation for Korean Surface Blasting Type (노천발파 표준공법의 진동예상식)

  • 양형식;김원범;최미진;장선종
    • Explosives and Blasting
    • /
    • v.22 no.3
    • /
    • pp.27-33
    • /
    • 2004
  • Particle Velocity Equations were suggested in this paper for Korean surface blasting types, which were developed by Korean Society for Explosive Engineers (KSEE). Standard charges per delay for types and distances also were determined. USBM equation which was adopted by MOCT (Korean Ministry of Construction and Transportation) shows many problems for Korean situations.

A Study on the Smoke-logging Phenomenon caused by Water Mist (Water Mist 분무액적에 의한 스모크-로깅현상에 관한 연구)

  • Yoon, Ung-Gi;Koo, In-Hyeok;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.249-250
    • /
    • 2015
  • This study contemplated the descending air current from the smoke layers related to the smoke logging phenomenon in the Water Mist applied design for effective evacuation safety design. As a result, database on the average particle diameter, particle velocity and distribution of sprinkling was obtained and the relationship between the water amount and particle diameter was obtained. Also Descending smoke velocity was significantly faster to 9.8m/s, it is determined that appeared rapidly by a high water pressure.

  • PDF

Study on Effect of gas superficial velocity on particle behavior in three phased Slurry Bubble Column Reactor (3상 Slurry Bubble Column Reactor에서 기체유속에 따른 고체입자의 거동에 대한 연구)

  • Yang, Jung-Hoon;Yang, Jung-Il;Lee, Ho-Tae;Kim, Hak-Joo;Chun, Dong-Hyun;Jung, Heon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.876-879
    • /
    • 2009
  • Fischer-Tropsch 합성 반응과 같은 slurry bubble column reactor에서는 반응 속도를 증진시키기 위해서는 서로 다른 상간의 접촉 면적을 최대화함으로써 물질 전달을 원활하게 유지하여야 한다. 특히 Fischer-Tropsch 합성 반응에서는 반응물인 기체가 촉매로서 기능하는 고체 표면으로의 external mass transfer가 효과적으로 이루어져야 하기 때문에 반응기 내의 기체의 거동뿐만 아니라 고체인 촉매의 분포에 대한 연구가 활발하게 이루어지고 있다. 따라서 본 연구에서는 반응기 내에 기체의 superficial velocity를 변화시키면서 기체의 hold up 뿐만 아니라 고체 입자의 분포특성에 대하여 관찰하였다. Superficial velocity가 증가함에따라 gas hold up의 경우, 일정하게 증가하다가 6 cm/sec 이상에서 그 증가폭이 감소하였다. 즉 6 cm/sec이상에서 turbulent flow regime을 형성하였다. 또한 고체입자의 분포 역시 기체의 superficial velocity가 증가함에따라 보다 균일하게 되는 것을 확인할 수 있었다.

  • PDF

Behavior of small particles in isotropic turbulence in the presence of gravity (중력이 존재하는 등방성 난류에서 작은 입자의 유동)

  • Cho, Seong-Gee;Yeo, Kyong-Min;Lee, Chang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2396-2400
    • /
    • 2008
  • The motion of small heavy particles in homogeneous isotropic turbulence in the present of gravity is investigated using Direct Numerical Simulations (DNS) at moderate Reynolds number. The Lagrangian velocity and acceleration statistics of particles and of flow for a wide range of Stokes number, defined as the ratio of the particle response time to Kolmogorov time scale of turbulence, were obtained for the direction of the gravity and normal direction, respectively. It is found that particles lose their correction faster than the case without gravity. Then, a significant increase in the average settling velocity was observed for a certain range of Stokes number. Our focus is placed on gravitational effect on very small particles. Our simulations show that as the Stokes number reduces to zero, their mean settling velocity approaches the terminal velocity in still fluid.

  • PDF

Splitting method for the combined formulation of fluid-particle problem

  • Choi, Hyung-Gwon;Yoo, Jung-Yul;Jeoseph, D.D.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.709-714
    • /
    • 2000
  • A splitting method for the direct numerical simulation of solid-liquid mixtures is presented, where a symmetric pressure equation is newly proposed. Through numerical experiment, it is found that the newly proposed splitting method works well with a matrix-free formulation fer some bench mark problems avoiding an erroneous pressure field which appears when using the conventional pressure equation of a splitting method. When deriving a typical pressure equation of a splitting method, the motion of a solid particle has to be approximated by the 'intermediate velocity' instead of treating it as unknowns since it is necessary as a boundary condition. Therefore, the motion of a solid particle is treated in such an explicit way that a particle moves by the known form drag (pressure drag) that is calculated from the pressure equation in the previous step. From the numerical experiment, it was shown that this method gives an erroneous pressure field even for the very small time step size as a particle velocity increases. In this paper, coupling the unknowns of particle velocities in the pressure equation is proposed, where the resulting matrix is reduced to the symmetric one by applying the projector of the combined formulation. It has been tested over some bench mark problems and gives reasonable pressure fields.

  • PDF

Analytical Study on the Gas-Solid Suspension Flows through Sonic and Supersonic Nozzles (음속 및 초음속 노즐을 통한 Gas-Solid Suspension 유동에 대한 해석적 연구)

  • Sun, JianGuo;Rajesh, G.;Kim, Heuydong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • A considerable deal of work has been carried out to get an insight into the gas-solid suspension flows and to specify the particle motion and its influence on the gas flow field. In this paper an attempt is made to develop an analytical model to study the effect of nozzle inlet/exit pressure ratio, particle/gas loading and the particle diameter effect on gas-solid suspension flow. The effect of the particle/gas loading on the mass flow, Mach number, thrust coefficient and static pressure variation through the nozzle is analyzed. The results obtained show that the presence of particles seems to reduce the strength of the shock wave. It is also found that smaller the particle diameter is, bigger will be the velocity as bigger particle will have larger slip velocity. The suspension flow of smaller diameter particles has almost same trend as that of single phase flow with ideal gas as working fluid. Depending on the ambient pressure, the thrust coefficient is found to be higher for larger particle/gas loading or back pressure ratio.

Numerical Analysis of the Particle Dispersion by the Variation of the Velocity Ratio in a Mixing Layer (혼합층에서 속도비 변화에 따른 입자확산 유동해석)

  • Seo, Tae Won;Kim, Tae Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.8-14
    • /
    • 2003
  • The particle dispersion in the turbulent mixing layer has been numerically investigated to clarify the effect of the velocity ratio in the large-scale vortical structures. In this study the LES with subgrid-scale model is employed. The Lagrangian method to predict the particle motion is applied. The particles of 10, 50, 150, 200${\mu}m$ in mean diameter were loaded into the origin of the mixing layer. It is shown that the characteristics of flow and growth rate are strongly dependent on the variation of the velocity ratio. It is also shown the relationship between the Stokes number and the particle dispersion. As a result, in the case of St~1 the particle dispersion is faster than the diffustion of the flow field while in the cases of both St<<1 and St>>1 it is shown that the particle dispersion in lower than the diffusion of the flow filed.