• Title/Summary/Keyword: Particle angularity

Search Result 12, Processing Time 0.027 seconds

Experimental Study on Effects of Sand Particles Shape on Geotechnical Properties (실험적 연구를 통한 모래입자 형상이 토질정수에 미치는 영향)

  • Shin, Eun-Chul;Kim, Jong-In;Lee, Han-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.896-905
    • /
    • 2006
  • Several soil parameters such as particle characteristics, geological element, drainage and loading conditions are influenced on the shear strength of soil. The characteristics of soil particles are important factor to the shear strength of soil. However, this component is not well considered in the determination of soil strength in Korea. The particle shape of sand was analyzed by utilizing SEM(Scanning Electron Micrograph) and compared its results in terms of aspect ratio, angularity and roughness. Based on the determined soil parameters, the ultimate bearing capacity of sandy ground was estimated by using Terzaghi bearing capacity equation.

  • PDF

THE LASER-BASED AGGREGATE SCANNING SYSTEM: CURRENT CAPABILITIES AND POTENTIAL DEVELOPMENTS

  • Kim, Hyeong-Gwan;Rauch, Alanf;Haas, Carl T.
    • Construction Engineering and Management
    • /
    • v.4 no.1 s.13
    • /
    • pp.48-54
    • /
    • 2003
  • An automated system for scanning and characterizing unbound aggregates, called the 'Laser-based Aggregate Scanning System'(LASS), has been developed at the University of Texas at Austin. The system uses a laser profiler to acquire and analyze true three-dimensional data on aggregate particles to measure various morphological properties. Tests have demonstrated that the system can rapidly and accurately measure grain size distribution and dimensional ratios, and can objectively quantify particle shape, angularity, and texture in a size invariant manner. In its present state of development, the LASS machine is a first-generation, laboratory testing device. With additional development, this technology is expected to provide high-quality, detailed information for laboratory and on-line quality control during aggregate production.

Effect of the type of sand on the fracture and mechanical properties of sand concrete

  • Belhadj, Belkacem;Bederina, Madani;Benguettache, Khadra;Queneudec, Michele
    • Advances in concrete construction
    • /
    • v.2 no.1
    • /
    • pp.13-27
    • /
    • 2014
  • The principal objective of this study is to deepen the characterization studies already led on sand concretes in previous works. Indeed, it consists in studying the effect of the sand type on the main properties of sand concrete: fracture and mechanical properties. We particularly insist on the determination of the fracture characteristics of this material which apparently have not been studied. To carry out this study, four different types of sand have been used: dune sand (DS), river sand (RS), crushed sand (CS) and river-dune sand (RDS). These sands differ in mineralogical nature, grain shape, angularity, particle size, proportion of fine elements, etc. The obtained results show that the particle size distribution of sand has marked its influence in all the studied properties of sand concrete since the sand having the highest diameter and the best particle size distribution has given the best fracture and mechanical properties. The grain shape, the angularity and the nature of sand have also marked their influence: thanks to its angularity and its limestone nature, crushed sand yielded good results compared to river and dune sands which are characterized by rounded shape and siliceous nature. Finally, it should further be noted that the sand concrete presents values of fracture and mechanical properties slightly lower than those of ordinary concrete. Compared to mortar, although the mechanical strength is lower, the fracture parameters are almost comparable. In all cases, the sand grains are debonded from the paste cement during the fracture which means that the crack goes through the paste-aggregate interface.

Determination of DEM Input Parameters for Dynamic Behavior Simulation of Aggregates (골재의 동적 거동 모사를 위한 DEM 입력변수의 결정 연구)

  • Yun, Tae Young;Yoo, Pyeong Jun;Kim, Yeon Bok
    • International Journal of Highway Engineering
    • /
    • v.16 no.1
    • /
    • pp.21-30
    • /
    • 2014
  • PURPOSES : Evaluation of input parameters determination procedure for dynamic analysis of aggregates in DEM. METHODS : In this research, the aggregate slump test and angularity test were performed as fundamental laboratory tests to determine input parameters of spherical particles in DEM. The heights spreads, weights of the simple tests were measured and used to calibrate rolling and static friction coefficients of particles. RESULTS : The DEM simulations with calibrated parameters showed good agreement with the laboratory test results for given dynamic condition. CONCLUSIONS : It is concluded that the employed calibration method can be applicable to determine rolling friction coefficient of DEM simulation for given dynamic conditions. However, further research is necessary to connect the result to the behavior of aggregate in packing and mixing process and to refine static friction coefficient.

Effect of Particle Crushing on the Results on DMT in Sand (입자 파쇄가 사질토의 DMT 결과에 미치는 영향)

  • Lee, Moon-Joo;Choi, Young-Min;Kim, Min-Tae;Bae, Kyung-Doo;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.740-746
    • /
    • 2010
  • Most important characteristics of calcareous sand are the particle angularity and hollow structure. These characteristics lead to the different behavior of calcareous sand compared to siliceous sand. This study performs a series of dilatometer test using calibration chamber, in order to analyze the effect of particle characteristic of calcareous sand on DMT indices. From experimental test, it is observed that the horizontal stress index($K_D$) and dilatometer modulus($E_D$) of calcareous Jeju sand is underestimated compared to siliceous sand. This is because the particle crushing during penetration induces the less contraction of the dilatometer membrane. A slightly smaller influence of particle crushing is reflected in $E_D$ rather than $K_D$, because $P_1$ pressure reflects the deformation characteristics of un-crushed particle relatively well. It is also observed that $K_D$ of Jeju sand is differently influenced by the vertical effective stress compared with that of siliceous sand.

  • PDF

A Study on the Shear Behavior of Sands on the Geomembranes (지오멤브레인 상의 모래의 전단거동에 관한 연구)

  • 이석원
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.3
    • /
    • pp.89-89
    • /
    • 2000
  • The shear behavior of any interface is a function of the fundamental properties of both materials at the interface. This study aimed at investigating the effect of planar surface roughness on the stress-horizontal displacement curve at theinterfaces composed of various geomembrane textures and granular materials. In addition, the extent of surfacialscarring on smooth geomembranes against granular materials during shearing induced by plowing effect was studied. It wasobserved that the displacements required to achieve peak and residual interface resistance, and the stress-displacementcurve at the interface vary greatly with the surface roughness of geomembrane. Quantification of surface roughnessvariations on smooth geomembrane due to plowing effect showed that the surfacial scarring during shearing by the soilparticles is directly related to both the normal stress and the angularity of the soil particles at the interface. The findingsof this study can be used to provide the useful information for the design and selection of counterface materials.

Numerical simulation of shear mechanism of concrete specimens containing two coplanar flaws under biaxial loading

  • Sarfarazi, Vahab;Haeri, Hadi;Bagheri, Kourosh
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.459-468
    • /
    • 2018
  • In this paper, the effect of non-persistent joints was determined on the behavior of concrete specimens subjected to biaxial loading through numerical modeling using particle flow code in two dimensions (PFC2D). Firstly, a numerical model was calibrated by uniaxial, Brazilian and triaxial experimental results to ensure the conformity of the simulated numerical model's response. Secondly, sixteen rectangular models with dimension of 100 mm by 100 mm were developed. Each model contains two non-persistent joints with lengths of 40 mm and 20 mm, respectively. The angularity of the larger joint changes from $30^{\circ}$ to $90^{\circ}$. In each configuration, the small joint angularity changes from $0^{\circ}$ to $90^{\circ}$ in $30^{\circ}$ increments. All of the models were under confining stress of 1 MPa. By using of the biaxial test configuration, the failure process was visually observed. Discrete element simulations demonstrated that macro shear fractures in models are because of microscopic tensile breakage of a large number of bonded discs. The failure pattern in Rock Bridge is mostly affected by joint overlapping whereas the biaxial strength is closely related to the failure pattern.

Critical State Parameters of a High Compressible Jeju Sand (압축성이 큰 제주해사의 한계상태정수)

  • Lee, Moon-Joo;Hong, Sung-Jin;Choi, Young-Min;Kim, Min-Tae;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1383-1390
    • /
    • 2009
  • This study conducted a series of drained triaxial test in order to determine the critical state parameters of a high compressible Jeju sand. Jeju sand is classified into mixed sand containing both siliceous and calcareous materials and has high extreme void ratios due to the angularity of grains and the intra-particle voids of hollow particles. It is observed that the behavior of Jeju sand is similar to that of general calcareous sand. The friction angle of Jeju sand at critical state gradually decreases with increasing the mean effective stress. Test result shows that the particle crushing resulted from stress during shear causes the reduction of void ratio at critical state.

  • PDF

Evaluation of Cone resistance of A Jeju Sand and Its Cementation Possibility (제주해사의 콘선단저항 및 고결가능성 평가)

  • Lee, Moon-Joo;Kim, Jae-Jeong;Shim, Jai-Beom;Lim, Chai-Geun;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1407-1414
    • /
    • 2009
  • In this study, a Jeju sand, which contains both siliceous and calcareous materials, was sampled from a beach in Jeju Island. It is observed that the Jeju sand has high extreme void ratios due to the angularity of grains and the intra-particle voids of hollow particles. From cone penetration test using calibration chamber system, it is found that the cone tip resistance($q_c$)-relative density(Dr)-vertical effective stress(${\sigma_v}'$) relation of Jeju sand almost matches to that of high compressible quartz sand. However, this correlation overestimates the relative density of a coastal sediments in Jeju Island maybe due to the cementation effect of this area. From analysis of the results of cone penetration and SPS tests at a coastal area in Jeju Island, it seems reasonable to assume that the coast of Jeju Island is a natural cemented sediments.

  • PDF

Simulation of the tensile behaviour of layered anisotropy rocks consisting internal notch

  • Sarfarazi, Vahab;Haeri, Hadi;Ebneabbasi, P.;Bagheri, Kourosh
    • Structural Engineering and Mechanics
    • /
    • v.69 no.1
    • /
    • pp.51-67
    • /
    • 2019
  • In this paper, the anisotropy of tensile behaviours of layered rocks consisting internal notch has been investigated using particle flow code. For this purpose, firstly calibration of PFC2D was performed using Brazilian tensile strength. Secondly Brazilian test models consisting bedding layer was simulated numerically. Thickness of layers was 10 mm and layered angularity was $90^{\circ}$, $75^{\circ}$, $60^{\circ}$, $45^{\circ}$, $30^{\circ}$, $15^{\circ}$ and $0^{\circ}$. The strength of bedding interface was too high. Each model was consisted of one internal notch. Notch length is 1 cm, 2 cm and 4 cm and notch angularities are $60^{\circ}$, $45^{\circ}$, $30^{\circ}$, $15^{\circ}$ and $0^{\circ}$. Totally, 90 model were tested. The results show that failure pattern was affected by notch orientation and notch length. It's to be noted that layer angle has not any effect on the failure pattern. Also, Brazilian tensile strength is affected by notch orientation and notch length.