DOI QR코드

DOI QR Code

Simulation of the tensile behaviour of layered anisotropy rocks consisting internal notch

  • Sarfarazi, Vahab (Department of Mining Engineering, Hamedan University of Technology) ;
  • Haeri, Hadi (Young Researchers and Elite Club, Bafgh Branch, Islamic Azad University) ;
  • Ebneabbasi, P. (Civil Engineering Department, Islamic Azad University) ;
  • Bagheri, Kourosh (Department of Civil Engineering, Malard Branch, Islamic Azad University)
  • Received : 2018.06.17
  • Accepted : 2018.11.17
  • Published : 2019.01.10

Abstract

In this paper, the anisotropy of tensile behaviours of layered rocks consisting internal notch has been investigated using particle flow code. For this purpose, firstly calibration of PFC2D was performed using Brazilian tensile strength. Secondly Brazilian test models consisting bedding layer was simulated numerically. Thickness of layers was 10 mm and layered angularity was $90^{\circ}$, $75^{\circ}$, $60^{\circ}$, $45^{\circ}$, $30^{\circ}$, $15^{\circ}$ and $0^{\circ}$. The strength of bedding interface was too high. Each model was consisted of one internal notch. Notch length is 1 cm, 2 cm and 4 cm and notch angularities are $60^{\circ}$, $45^{\circ}$, $30^{\circ}$, $15^{\circ}$ and $0^{\circ}$. Totally, 90 model were tested. The results show that failure pattern was affected by notch orientation and notch length. It's to be noted that layer angle has not any effect on the failure pattern. Also, Brazilian tensile strength is affected by notch orientation and notch length.

Keywords

References

  1. Amadei, B. (1996), "Importance of anisotropy when estimating and measuring in situ stresses in rock", Int. J. Rock Mech. Min. Sci., 33(3), 293-325. https://doi.org/10.1016/0148-9062(95)00062-3
  2. Bahaaddini, M., Hagan, P.C., Mitra, R. and Hebblewhite, B.K. (2014), "Scale effect on the shear behaviour of rock joints based on a numerical study", Eng. Geol., 181, 212-223. https://doi.org/10.1016/j.enggeo.2014.07.018
  3. Bahaaddini, M., Hagan, P.C., Mitra, R. and Hebblewhite, B.K. (2016a), "Numerical study of the mechanical behavior of nonpersistent jointed rock masses", Int. J. Geomech., 16(1), 1-10.
  4. Bahaaddini, M., Hagan, P.C., Mitra, R. and Khosravi, M.H. (2016b), "Experimental and numerical study of asperity degradation in the direct shear test", Eng. Geol., 204, 41-52. https://doi.org/10.1016/j.enggeo.2016.01.018
  5. Boumaaza, M., Bezazi, A., Bouchelaghem, H., Benzennache, N., Amziane, S. and Scarpa, F. (2017), "Behavior of pre-cracked deep beams with composite materials repairs", Struct. Eng. Mech., 63(5), 575-583. https://doi.org/10.12989/SEM.2017.63.5.575
  6. Cho, J.W., Kim, H., Jeon, S.W. and Min, K.B. (2012), "Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist", Int. J. Rock Mech. Min. Sci., 50, 158-169. https://doi.org/10.1016/j.ijrmms.2011.12.004
  7. Dai, F., Wei, M.D., Xu, N.W., Zhao, T. and Xu, Y. (2015b), "Numerical investigation of the progressive fracture mechanisms of four ISRM-suggested specimens for determining the mode I fracture toughness of rocks", Comput. Geotech., 69, 424-441. https://doi.org/10.1016/j.compgeo.2015.06.011
  8. Dan, D.Q. and Konietzky, H. (2014), "Numerical simulations and interpretations of Brazilian tensile tests on transversely isotropic rocks", Int. J. Rock Mech. Min. Sci., 71, 53-63. https://doi.org/10.1016/j.ijrmms.2014.06.015
  9. Dan, D.Q., Konietzky, H. and Herbst, M. (2013), "Brazilian tensile strength tests on some ani-sotropic rocks", Int. J. Rock Mech. Min. Sci., 58, 1-7. https://doi.org/10.1016/j.ijrmms.2012.08.010
  10. Duan, K. and Kwok, C.Y. (2015), "Discrete element modeling of anisotropic rock under Brazilian test conditions", Int. J. Rock Mech. Min. Sci., 78, 46-56. https://doi.org/10.1016/j.ijrmms.2015.04.023
  11. Fortsakis, P., Nikas, K., Marinos, V. and Marinos, P. (2012), "Anisotropic behaviour of strati fied rock masses in tunneling", Eng. Geol., 141, 74-83. https://doi.org/10.1016/j.enggeo.2012.05.001
  12. Gholami, R. and Rasouli, V. (2014), "Mechanical and elastic properties of transversely isotropic slate", Rock Mech. Rock Eng., 47(5), 1763-1773. https://doi.org/10.1007/s00603-013-0488-2
  13. Haeri, H., Sarfarazi, V., Fatehi, M., Hedayat, A. and Zhu, Z. (2016c), "Experimental and numerical study of shear fracture in brittle materials with interference of initial double", Acta Mech. Soil. Sinic., 29(5), 555-566. https://doi.org/10.1016/S0894-9166(16)30273-7
  14. Haeri, H., Khaloo, A. and Marji, M.F. (2015a), "Experimental and numerical simulation of the microcrack coalescence mechanism in rock-like materials", Strength Mater., 47(5), 740-754. https://doi.org/10.1007/s11223-015-9711-6
  15. Haeri, H., Khaloo, A. and Marji, M.F. (2015b), "Fracture analyses of different pre-holed concrete specimens under compression", Acta Mech. Sinic., 31(6), 855-870. https://doi.org/10.1007/s10409-015-0436-3
  16. Haeri, H., Khaloo, A. and Marji, M.F. (2015c), "A coupled experimental and numerical simulation of rock slope joints behavior", Arab. J. Geosci., 8(9), 7297-7308. https://doi.org/10.1007/s12517-014-1741-z
  17. Haeri, H., Sarfarazi, V. and Hedayat, A. (2016a), "Suggesting a new testing device for determination of tensile strength of concrete", Struct. Eng. Mech., 60(6), 939-952. https://doi.org/10.12989/sem.2016.60.6.939
  18. Haeri, H., Sarfarazi, V. and Lazemi, H. (2016b), "Experimental study of shear behavior of planar non-persistent joint", Comput. Concrete, 17(5), 639-653. https://doi.org/10.12989/cac.2016.17.5.639
  19. Haeri, H. and Sarfarazi, V. (2016), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. https://doi.org/10.12989/cac.2016.17.6.723
  20. Jia, P. and Tang, C.A. (2008), "Numerical study on failure mechanism of tunnel in jointed rock mass", Tunn. Undergr. Space Technol., 23(5), 500-507. https://doi.org/10.1016/j.tust.2007.09.001
  21. Jiang, Y., Tanabashi, Y., Li, B. and Xiao, J. (2006), "In fluence of geometrical distribution of rock joints on deformational behavior of underground opening", Tunn. Undergr. Space Technol., 21(5), 485-491. https://doi.org/10.1016/j.tust.2005.10.004
  22. Johansson, F. (2016), "Influence of scale and matedness on the peak shear strength of fresh, unweathered rock joints", Int. J. Rock Mech. Min. Sci., 82, 36-47. https://doi.org/10.1016/j.ijrmms.2015.11.010
  23. Kequan, Y.U. and Zhoudao, L.U. (2015), "Influence of softening curves on the residual fracture toughness of post-fire normal-strength concrete", Comput. Concrete, 15(2), 102-111.
  24. Khanlari, G., Rafiei, B. and Abdilor, Y. (2015), "An experimental investigation of the Brazilian tensile strength and failure patterns of laminated sandstones", Rock Mech. Rock Eng., 48(2), 843-852. https://doi.org/10.1007/s00603-014-0576-y
  25. Khosravi, A., Simon, R. and Rivard, P. (2017), "The shape effect on the morphology of the fracture surface induced by the Brazilian test", Int. J. Rock Mech. Min. Sci., 93, 201-209. https://doi.org/10.1016/j.ijrmms.2017.01.007
  26. Lazear, G.D. (2009), "Fractures, convection and underpressure: Hydrogeology on the southern margin of the Piceance basin, west-central Colorado, USA", Hydrogeol. J., 17(3), 641-664. https://doi.org/10.1007/s10040-008-0381-3
  27. Lee, J.W. and Lee, J.Y. (2018), "A transfer matrix method for in-plane bending vibrations of tapered beams with axial force and multiple edge cracks", Struct. Eng. Mech., 66(1), 125-138. https://doi.org/10.12989/SEM.2018.66.1.125
  28. Li, L.C., Xia, Y.J., Huang, B., Zhang, L.Y., Li, M. and Li, A.S. (2016), "The behaviour of fracture growth in sedimentary rocks: A numerical study based on hydraulic fracturing processes", Energies, 9(3), 169-197. https://doi.org/10.3390/en9030169
  29. Li, X.L. (2013), "Timodaz: A successful international cooperation project to investigate the thermal impact on the EDZ around a radioactive waste disposal in clay host rocks", J. Rock Mech. Geotech. Eng., 5(3), 231-242. https://doi.org/10.1016/j.jrmge.2013.05.003
  30. Lisjak, A., Garitte, B., Grasselli, G., Muller, H.R. and Vietor, T. (2015), "The excavation of a circular tunnel in a bedded argillaceous rock (opalinus clay): Short-term rock mass response and FDEM numerical analysis", Tunn. Undergr. Space Technol., 45, 227-248. https://doi.org/10.1016/j.tust.2014.09.014
  31. Liu, K.D., Liu, Q.S., Zhu, Y.G. and Liu, B. (2013), "Experimental study of coal considering directivity effect of bedding plane under Brazilian splitting and uniaxial compression", Chin. J. Rock Mech. Eng., 32(2), 308-316.
  32. Ma, T., Wu, B., Fu, J., Zhang, Q. and Chen, P. (2017b), "Fracture pressure prediction for layered formations with anisotropic rock strengths", J. Nat. Gas Sci. Eng., 38, 485-503. https://doi.org/10.1016/j.jngse.2017.01.002
  33. Ma, T., Zhang, Q.B., Chen, P., Yang, C. and Zhao, J. (2017a), "Fracture pressure model for inclined wells in layered formations with anisotropic rock strengths", J. Petrol. Sci. Eng., 149, 393-408. https://doi.org/10.1016/j.petrol.2016.10.050
  34. Monfared, M.M. "Mode III SIFs for interface cracks in an FGM coating-substrate system", Struct. Eng. Mech., 64(1), 71-79. https://doi.org/10.12989/sem.2017.64.1.071
  35. Min, K.B. and Jing, L.R. (2003), "Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method", Int. J. Rock Mech. Min. Sci., 40(6), 795-816. https://doi.org/10.1016/S1365-1609(03)00038-8
  36. Nabil, B., Abdelkader, B., Miloud, A. and Noureddine, B. (2017), "On the mixed-mode crack propagation in FGMs plates: Comparison of different criteria", Struct. Eng. Mech., 61(3), 371-379. https://doi.org/10.12989/sem.2017.61.3.371
  37. Pan, B., Gao, Y. and Zhong, Y. (2014), "Theoretical analysis of overlay resisting crack propagation in old cement concrete pavement", Struct. Eng. Mech., 52(4) 167-181.
  38. Ramadoss, P. and Nagamani, K. (2013), "Stress-strain behavior and toughness of high-performance steel fiber reinforced concrete in compression", Comput. Concrete, 11(2), 55-65.
  39. Rezaiee-Pajand, M. and Gharaei-Moghaddam, N. (2018), "Two new triangular finite elements containing stable open cracks", Struct. Eng. Mech., 65(1), 99-110. https://doi.org/10.12989/SEM.2018.65.1.099
  40. Sato, K. (2006), "Fracture toughness evaluation based on tension-softening model and its application to hydraulic fracturing", Pure Appl. Geophys., 163, 1073-1089. https://doi.org/10.1007/s00024-006-0066-6
  41. Seingre, G. (2005), Tunnel de Base du Lotschberg-Bil an de L'excavation aux Tunneliers, In: Arnould, M., Ledru, P. (Eds.), GEOLINE 2005, BRGM Editions, Lyon, France, May.
  42. Shakti, P.J., Dayal, R.P. and Devasis, M. (2015), "Comparative study on cracked beam with different types of cracks carrying moving mass", Struct. Eng. Mech., 56(5), 797-811. https://doi.org/10.12989/sem.2015.56.5.797
  43. Tavallali, A. and Vervoort, A. (2010), "Effect of layer orientation on the failure of layered sandstone under Brazilian test conditions", Int. J. Rock Mech. Min. Sci., 47(2), 313-322. https://doi.org/10.1016/j.ijrmms.2010.01.001
  44. Vervoort, A., Min, K.B., Konietzky, H., Cho, J.W., Debecker, B., Dinh, Q.D., Fruhwirt, T. and Tavallali, A. (2014), "Failure of transversely isotropic rock under Brazilian test conditions", Int. J. Rock Mech. Min. Sci., 70, 343-352. https://doi.org/10.1016/j.ijrmms.2014.04.006
  45. Wang, J., Xie, L.Z., Xie, H.P., Ren, L., He, B., Li, C.B., Yang, Z.P. and Gao, C. (2016a), "Effect of layer orientation on acoustic emission characteristics of anisotropic shale in Brazilian tests", J. Nat. Gas Sci. Eng., 36, 1120-1129. https://doi.org/10.1016/j.jngse.2016.03.046
  46. Wang, P.T., Ren, F.H., Miao, S.J., Cai, M.F. and Yang, T.H. (2017), "Evaluation of the anisotropy and directionality of a jointed rock mass under numerical direct shear tests", Eng. Geol., 225, 29-41. https://doi.org/10.1016/j.enggeo.2017.03.004
  47. Wang, P.T., Yang, T.H., Xu, T., Cai, M.F. and Li, C.H. (2016b), "Numerical analysis on scale effect of elasticity, strength and failure patterns of jointed rock masses", Geosci. J., 20(4), 539-549. https://doi.org/10.1007/s12303-015-0070-x
  48. Wang, S.Y., Sloan, S.W., Tang, C.A. and Zhu, W.C. (2012), "Numerical simulation of the failure mechanism of circular tunnels in transversely isotropic rock masses", Tunn. Undergr. Space Technol., 32, 231-244. https://doi.org/10.1016/j.tust.2012.07.003
  49. Wang, T., Xu, D., Elsworth, D. and Zhou, W. (2016c), "Distinct element modeling of strength variation in jointed rock masses under uniaxial compression", Geomech. Geophys. Geoenerg. Georesour., 2(1), 11-24. https://doi.org/10.1007/s40948-015-0018-7
  50. Wang, X., Zhu, Z., Wang, M., Ying, P., Zhou, L. and Dong, Y. (2017), "Study of rock dynamic fracture toughness by using VB-SCSC specimens under medium-low speed impacts", Eng. Fract. Mech., 181, 52-64. https://doi.org/10.1016/j.engfracmech.2017.06.024
  51. Wasantha, P.L.P., Ranjith, P.G., Zhang, Q.B. and Xu, T. (2015), "Do joint geometrical properties influence the fracturing behaviour of jointed rock? An investigation through joint orientation", J. Geomech. Geophys. Geol. Energy Geol. Res., 1(1-2), 3-14. https://doi.org/10.1007/s40948-015-0001-3
  52. Wei, M.D., Dai, F., Xu, N.W., Xu, Y. and Xia, K. (2015), "Three-dimensional numerical evaluation of the progressive fracture mechanism of cracked chevron notched semi-circular bend rock specimens", Eng. Fract. Mech., 134, 286-303. https://doi.org/10.1016/j.engfracmech.2014.11.012
  53. Wu, W., Wang, G.B. and Mao, H.J. (2010), "Investigation of porosity effect on mechanical strength characteristics of dolostone", Rock Soil Mech., 31(12), 3709-3714. https://doi.org/10.3969/j.issn.1000-7598.2010.12.003
  54. Xia, K., Yao, W. and Wu, B. (2017), "Dynamic rock tensile strengths of Laurentian granite: Experimental observation and micromechanical model", J. Rock Mech. Geotech. Eng., 9(1), 116- 124. https://doi.org/10.1016/j.jrmge.2016.08.007
  55. Xu, T., Ranjith, P.G., Wasantha, P.L.P., Zhao, J., Tang, C.A. and Zhu, W.C. (2013), "Influence of the geometry of partially-spanning joints on mechanical properties of rock in uniaxial compression", Eng. Geol., 167, 134-147. https://doi.org/10.1016/j.enggeo.2013.10.011
  56. Yang, T.H., Wang, P.T., Xu, T., Yu, Q.L., Zhang, P.H., Shi, W.H. and Hu, G.J. (2015), "Anisotropic characteristics of fractured rock mass and a case study in Shirengou Metal Mine in China", Tunn. Undergr. Space Technol., 48, 129-139. https://doi.org/10.1016/j.tust.2015.03.005
  57. Yaylac, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143
  58. Yu, L., Weetjens, E., Sillen, X., Vietor, T., Li, X., Delage, P., Labiouse, V. and Charlier, R. (2014), "Consequences of the thermal transient on the evolution of the damaged zone around a repository for heat-emitting high-level radioactive waste in a clay formation: A performance assessment perspective", Rock Mech. Rock Eng., 47(1), 3-19. https://doi.org/10.1007/s00603-013-0409-4
  59. Yuan, R. and Shen, B. (2017), "Numerical modelling of the contact condition of a Brazilian disk test and its influence on the tensile strength of rock", Int. J. Rock Mech. Min. Sci., 93, 54-65. https://doi.org/10.1016/j.ijrmms.2017.01.010
  60. Zhang, S.W., Shou, K.J., Xian, X.F., Zhou, J.P. and Liu, G.J. (2018), "Fractal characteristics and acoustic emission of anisotropic shale in Brazilian tests", Tunn. Undergr. Space Technol., 71, 298-308. https://doi.org/10.1016/j.tust.2017.08.031
  61. Zhu, Z., Xie, H. and Ji, S. (1997), "The mixed boundary problems for a mixed mode crack in a finite plate", Eng. Fract. Mech., 56(5), 647-655. https://doi.org/10.1016/S0013-7944(96)00123-3