• 제목/요약/키워드: Particle Impingement Erosion

검색결과 11건 처리시간 0.023초

유압시스템의 입자 침해 침식의 실험적 고찰 (An Experimental Investigation of Particle Impingement Erosion in Hydraulic Systems)

  • 이재천;김성훈
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.117-122
    • /
    • 2002
  • This study assesses the wear process of particle impingement erosion which is a major source of erosion among fluid power components. First, Bitter's theory was modified to simplify engineering calculations. Second, actual experiments were conducted to validate the modified equation. And the effect of concentration and size distribution of impinging particles was tested. Little deviation from the prediction of the modified equation was observed. To develop complete analytical approach to the erosion mechanism, further experimental data are required to establish a correlation with other engineering parameters.

유압시스템의 입자 침해 침식의 실험적 고찰 (An Experimental Investigation of Particle Impingement Erosion in Hydraulic System)

  • 이재천
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제33회 춘계학술대회 개최
    • /
    • pp.15-21
    • /
    • 2001
  • This study assesses the wear process of particle impingement erosion which is a major source of erosion among fluid power components. First, Bitter's theory was modified to simplify engineering calculations. Second, actual experiments were conducted to validate the modified equation. And the effect of concentration and size distribution of impinging particles was tested. Little deviation from the prediction of the modified equation was observed. To develop an analytical approach to the erosion mechanism, further experimental data are required to establish a correlation with other engineering parameters.

  • PDF

Al-Zn-Zr 용사코팅층의 고체입자 충돌 침식특성에 미치는 봉공처리의 영향 (Effect of Sealing Treatment on Solid Particle Impingement Erosion of Al-Zn-Zr Thermal Spray Coating Layer)

  • 허호성;김성종
    • Corrosion Science and Technology
    • /
    • 제21권1호
    • /
    • pp.68-76
    • /
    • 2022
  • Several technologies are employed to protect substrates from corrosion and erosion damage. In particular, arc thermal spray coating technology is widely used as anti-corrosive technology for steel and concrete structures and is applied to offshore plants and petrochemical and drilling facilities. In this investigation, solid particle impingement erosion experiments were performed on an arc thermal spraying-coated specimen using 85% Al-14% Zn-1% Zr wire rod in KR-RA steel. This study investigated the effect of fluorosilicone sealing on the erosion resistance characteristics of the thermal spray coating layer. The erosion rates of the thermal spray-coated and sealed specimens were 4.1×10-4 and 8.5×10-4, respectively. At the beginning of the experiment, the fluorosilicone sealant was almost destroyed by the impact of the solid particles. The destruction time for the coating layer was 10 minutes for the thermal spray-coated specimen and 13 minutes for the sealed specimens, indicating that the sealed specimens had better erosion resistance characteristics to solid particle impingement.

탄소섬유강화복합재료의 마식에 관한 연구 (Study on Erosion of Carbon Fiber Reinforced Plastic Composite)

  • 김엄기;김일현
    • 한국산학기술학회논문지
    • /
    • 제9권2호
    • /
    • pp.291-297
    • /
    • 2008
  • 일방향 탄소섬유 강화 복합재료(CFRP)의 고체입자 마식 거동을 다양한 충돌각도 (${\alpha}$), 속도 (V) 및 섬유 방향 (${\beta}$)에 대하여 연구하였다. 실험결과 30o 충돌각도에서 최대 마식률을 나타내었고, 마식률은 멱함수 법칙 $E{\propto}\;V^n$에 따라 충돌속도에 크게 의존하였다. 본 연구에서는 이상의 결과로부터 일방향 탄소섬유 강화 복합재료의 마식률을 충돌속도, 충돌각도 및 섬유방향 각도로부터 예측하는 방법을 제안하였다.

B-Scan 초음파 측정장비를 이용한 원전 배관 침식손상 검사법 개발 (Development of Inspection Methodology for a Nuclear Piping Wall Thinning Caused by Erosion Using Ultrasonic B-Scan Measurement Device)

  • 이대영;서혁기;황경모
    • Corrosion Science and Technology
    • /
    • 제11권3호
    • /
    • pp.89-95
    • /
    • 2012
  • U.S. Electric Power Research Institute (EPRI) has developed CHECWORKS program and applied it to power plant piping lines since some lines were ruptured by flow-accelerated corrosion (FAC) in 1978. Nowadays the CHECWORKS program has been used to manage pipe wall thinning phenomena caused by FAC. However, various erosion mechanisms can occur in carbon-steel piping. Most common forms of erosion are cavitation, flashing, liquid droplet impingement erosion (LDIE), and Solid Particle Erosion (SPE). Those erosion mechanisms cause pipe wall thinning, leaking, rupturing, and even result in unplanned shutdowns of utilities. Especially, in two phase condition, LDIE damages a wide scope of plant pipelines. Furthermore, LDIE is the major culprit to cause such as power runback by pipe leaking. This paper describes the methodologies that manage wall thinning and also predict LDIE wall thinning area. For this study, current properties of two-phase condition are investigated and LDIE areas are selected. The areas are checked by B-Scan method to detect the effect of wall thinning phenomena.

예측모델 및 실험을 통한 액적충돌침식 손상 평가 (Evaluation of Liquid Droplet Impingement Erosion through Prediction Model and Experiment)

  • 윤훈;황경모
    • 대한기계학회논문집B
    • /
    • 제35권10호
    • /
    • pp.1105-1110
    • /
    • 2011
  • 유동가속부식(FAC)은 가장 잘 알려진 탄소강 배관 손상 메커니즘으로 현재 국내 전 원전에서는 유동가속부식으로 인한 감육현상을 관리할 수 있는 체계적인 방안이 수립되어 있다. 그러나, 발전소 배관은 다양한 침식손상 메커니즘에 의해 여전히 손상을 받고 있다. 대표적인 침식 메커니즘은 캐비테이션, 액적충돌침식(LDIE), 플래싱, 고체입자침식(SPE)이다. 본 논문에서 기술하는 액적충돌침식 은 손상예측이 어렵고, 관리를 위한 체계적인 방안도 수립되어 있지 않다. 본 논문에서는 실제 발전소 현장에서 발생한 사례를 바탕으로 기존에 개발된 예측 모델과 실험을 통해 얻어진 상관식을 비교하여 액적충돌침식으로 인한 손상을 평가할 수 있는 방법을 제시하였다.

플라즈마 용사시킨 Carbide Coating층의 공상입자 Erosion 특성에 관한 연구 (Solid Particle Erosion of Plasma-Sprayed Coatings)

  • 전승범;남승훈;김종집;이주진
    • 한국표면공학회지
    • /
    • 제23권2호
    • /
    • pp.11-17
    • /
    • 1990
  • The erosion characteristice of plasma-sprayed tungsten carbide chromium carbide coatings were investigated. Erosion tests were perfomed at room temperature by using Al2O3 and SiC particles accleerated in air stream. Weight losses of the coatings were measured over a range of paricle velocities and impingement angle. It was found that, for both of this coatings, the maximum erosion occurrd at a normal angle of impact, and the erosion rate at this impact angle was a power function of pparticle velocity. The values of the velocty emponent were between 3.07 and 3.50 Erosion value of chromium carbide coating was higher than that of tungsten carbide coating.

  • PDF

CHECWORKS와 ToSPACE 프로그램의 배관감육 해석결과 비교 (Comparison of Wall Thinning Analysis Results between CHECWORKS and ToSPACE)

  • 황경모;윤훈;서혁기
    • Corrosion Science and Technology
    • /
    • 제17권6호
    • /
    • pp.317-323
    • /
    • 2018
  • Assumptions have always been that wall thinning on the secondary side piping in nuclear power plants is mostly caused by Flow-Accelerated Corrosion (FAC). Recent studies have showed that wall thinning on the secondary side piping is caused by Liquid Droplet Impingement Erosion (LDIE), Solid Particle Erosion (SPE), cavitation, and flashing. To manage those aging mechanisms, several software such as CHECWORKS, COMSY, and BRT-CICERO have been used in nuclear power plants. Korean nuclear power plants have been using the CHECWORKS program since 1996 to date. However, many site engineers have experienced a lot of inconveniences and problems in using the CHECWORKS program. In order to work through the inconveniences and to remedy problems, KEPCO-E&C has developed a "3D-based pipe wall thinning management program (ToSPACE)" based on the experience of over 30 years in relation to the pipe wall thinning management. This study compares the results of FAC and LDIE analysis using both the CHECWORKS and ToSPACE programs with respect to validation of the wall thinning analysis results.

고체 추진기관에서 산화알루미늄 입자가 노즐 내열재의 삭마에 미치는 영향 (Effects of Aluminum Oxide Particles on the Erosion of Nozzle Liner for Solid Rocket Motors)

  • 황기영;임유진;함희철
    • 한국항공우주학회지
    • /
    • 제34권8호
    • /
    • pp.95-103
    • /
    • 2006
  • 알루미늄 분말이 약 20% 포함된 2종류의 고체 추진제에 대해 원료성분, 연소실에서의 연소가스 물성치 및 산화알루미늄의 입자 크기를 비교 분석하였다. 산화제(AP/HNIW) 분말이 200과 5 ${\mu}m$로 이분양상이고 47% 부피분율을 지닌 알루미늄을 함유한 PCP계 추진제는 산화제(AP) 분말이 400, 200 및 6 ${\mu}m$로 삼분양상이고 64% 부피분율을 지닌 알루미늄을 함유한 HTPB계 추진제 보다 알루미늄들이 응집될 가능성이 크다는 것을 축소부 내열재에서 채취한 산화알루미늄 입자의 SEM 사진을 통해 확인할 수 있었다. PCP계 추진제를 적용한 고체 추진기관의 노즐 축소부 내열재에서는 큰 산화알루미늄 입자의 충돌로 인해 그레인 슬랏과 일치하는 4개 원주방향 부위에서 삭마가 크게 되었지만 HTPB계 추진제를 적용한 경우에는 원주방향으로 균일하게 삭마되었다.

ToSPACE 프로그램을 이용한 FAC 해석결과와 실험결과 비교 (Comparison Between FAC Analysis Result Using ToSPACE Program and Experimental Result)

  • 황경모;윤훈;서혁기;정의제;김경모;김동진
    • Corrosion Science and Technology
    • /
    • 제19권3호
    • /
    • pp.131-137
    • /
    • 2020
  • A number of piping components in the secondary system of nuclear power plants (NPPs) are exposed to aging mechanisms, such as flow-accelerated corrosion (FAC), cavitation, flashing, solid particle erosion, and liquid droplet impingement erosion. Those mechanisms may lead to thinning, leaking, or rupture of the components. Due to the pipe ruptures caused by wall thinning in Surry unit 2 in the USA in 1986 and Mihama unit 3 in Japan in 1994, pipe wall thinning management has emerged as one of the most important issues in the nuclear industry. To manage pipe wall thinning, a foreign program has been utilized for NPPs in Korea since 1996. As our experience and knowledge of pipe wall thinning management have accumulated, our program needs to reflect our experience, requests from users, and the result of recent experiments using Flow Accelerated Corrosion Testing System (FACTS). FACTS is the empirical experimental facility developed by Korea Atomic Energy Research Institute (KAERI) for tests. Accordingly, KEPCO-E&C developed a 3D-based pipe wall thinning management program called ToSPACE in 2016. This paper describes a comparison between the FAC analysis results using ToSPACE and the experimental results using FACTS to verify their applicability to pipe wall thinning management in NPPs.