The present study aims at investigating the relationship between voices and the physical images triggered by the voices. It is the final part of a four-part series and the results reported in the present study are limited to those of American speakers and American listeners. Combined with the results from previous studies (Moon, 2000; Moon, 2002; Tak, 2005), the results suggest that (1) there is a very strong, much higher than chance-level relationship between voices and the pictures chosen for the voices by the perception experiment subjects; (2) the more physical characteristics that are given, the better the chance for correctly matching voices with pictures; and (3) culture (in the present, language environment) seems to play a role in conjuring up the mental images from voices.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.34-36
/
2019
기존 딥 러닝을 이용한 형태소 분석 및 품사 태깅(Part-Of-Speech tagging)은 feed-forward neural network에 CRF를 결합하는 방법이나 sequence-to-sequence 모델을 이용한 방법 등의 다양한 모델들이 연구되었다. 본 논문에서는 한국어 형태소 분석 및 품사 태깅을 수행하기 위하여 최근 자연어처리 태스크에서 많은 성능 향상을 보이고 있는 BERT를 기반으로 한 음절 단위 LSTM-CRF 모델을 제안한다. BERT는 양방향성을 가진 트랜스포머(transformer) 인코더를 기반으로 언어 모델을 사전 학습한 것이며, 본 논문에서는 한국어 대용량 코퍼스를 어절 단위로 사전 학습한 KorBERT를 사용한다. 실험 결과, 본 논문에서 제안한 모델이 기존 한국어 형태소 분석 및 품사 태깅 연구들 보다 좋은 (세종 코퍼스) F1 98.74%의 성능을 보였다.
In this paper, we implement a crossword game, which operate by speech. The CAA (Cross Array Algorithm) produces the crossword array randomly and automatically using an domain-dictionary. For producing the crossword array, we construct seven domain-dictionaries. The crossword game is operated by a mouse and a keyboard and is also operated by speech. For the user interface by speech, we use a speech recognizer and a speech synthesizer and this provide more comfortable interface to the user. The efficiency evaluation of CAA is performed by estimating the processing times of producing the crossword array and the generation ratio of the crossword array. As the results of the CAA's efficiency evaluation, the processing times is about 10ms and the generation ratio of the crossword array is about 50%. Also, the recognition rates were 95.5%, 97.6% and 96.2% for the window sizes of "$7{\times}7$", "$9{\times}9$," and "$11{\times}11$" respectively.}11$" respectively.vely.
In this paper, we propose a stochastic model for sentence speech understanding using dictionary and thesaurus. The proposed model extracts words from an input speech or text into a sentence. A computer is sellected category of dictionary database compared the word extracting from the input sentence calculating a probability value to the compare results from stochastic model. At this time, computer read out upper dictionary information from the upper dictionary searching and extracting word compared input sentence caluclating value to the compare results from stochastic model. We compare adding the first and second probability value from the dictionary searching and the upper dictionary searching with threshold probability that we measure the sentence understanding rate. We evaluated the performance of the sentence speech understanding system by applying twenty questions game. As the experiment results, we got sentence speech understanding accuracy of 79.8%. In this case, probability ($\alpha$) of high level word is 0.9 and threshold probability ($\beta$) is 0.38.
A large number of current language processing systems use a part-of-speech tagger for preprocessing. Most language processing systems required a tagger with the highest possible accuracy. Specially, the use of domain-specific advantages has become a hot issue in machine translation community to improve the translation quality. This paper addresses a method for customizing an HMM or LHMM based English tagger from general domain to specific domain. The proposed method is to semi-automatically customize the output and transition probabilities of HMM or LHMM using domain-specific raw corpus. Through the experiments customizing to Patent domain, our LHMM tagger adapted by the proposed method shows the word tagging accuracy of 98.87% and the sentence tagging accuracy of 78.5%. Also, compared with the general tagger, our tagger improved the word tagging accuracy of 2.24% (ERR: 66.4%) and the sentence tagging accuracy of 41.0% (ERR: 65.6%).
Journal of the Korea Society of Computer and Information
/
v.13
no.7
/
pp.11-18
/
2008
Korean morphological analyzer generally generates multiple candidates, and then selects the most likely one among multiple candidates. As the number of candidates increases, the chance that the correctly analyzed candidate is included in the candidate list also grows. This process, however, increases ambiguity and then deteriorates the performance. In this paper, we propose a new rule-based model that produces one best analysis. The analysis rules are automatically extracted from large amount of Part-of-Speech tagged corpus, and the proposed model does not require any manual construction cost of analysis rules, and has shown high success rate of analysis. Futhermore, the proposed model can reduce the ambiguities and computational complexities in the candidate selection phase because the model produces one analysis when it can successfully analyze the given word. By combining the conventional probability-based model. the model can also improve the performance of analysis when it does not produce a successful analysis.
Kim, GyeongMin;Han, Seunggnyu;Oh, Dongsuk;Lim, HeuiSeok
Journal of Digital Convergence
/
v.17
no.12
/
pp.243-248
/
2019
Multi-Task Learning(MTL) is a training method that trains a single neural network with multiple tasks influences each other. In this paper, we compare performance of MTL Named entity recognition(NER) model trained with Korean traditional culture corpus and other NER model. In training process, each Bi-LSTM layer of Part of speech tagging(POS-tagging) and NER are propagated from a Bi-LSTM layer to obtain the joint loss. As a result, the MTL based Bi-LSTM model shows 1.1%~4.6% performance improvement compared to single Bi-LSTM models.
This study examines the problem of incorrect usage of grammatical terms that are quite common in English grammar teaching process and suggests ways to revise and improve the errors. Parts of speech and sentence elements are indispensable for any grammatical explanation. These grammatical terms are a core part of the grammar, but they are frequently used without being verified correctly and interchangeably with no distinction. These terms refer to different things, and when they are used interchangeably, they cause confusion in the establishment of grammar cognition. In result, there is a crucial need to discuss and improve the definitions of the grammatical terms defined in the English teaching process for proper improvement in effective English education.
Mohammed Abdul Majeed;Rossilawati Sulaiman;Zarina Shukur
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.1
/
pp.170-191
/
2024
The transmission of confidential data using cover media is called steganography. The three requirements of any effective steganography system are high embedding capacity, security, and imperceptibility. The text file's structure, which makes syntax and grammar more visually obvious than in other media, contributes to its poor imperceptibility. Text steganography is regarded as the most challenging carrier to hide secret data because of its insufficient redundant data compared to other digital objects. Unicode characters, especially non-printing or invisible, are employed for hiding data by mapping a specific amount of secret data bits in each character and inserting the character into cover text spaces. These characters are known with limited spaces to embed secret data. Current studies that used Unicode characters in text steganography focused on increasing the data hiding capacity with insufficient redundant data in a text file. A sequential embedding pattern is often selected and included in all available positions in the cover text. This embedding pattern negatively affects the text steganography system's imperceptibility and security. Thus, this study attempts to solve these limitations using the Part-of-speech (POS) tagging technique combined with the randomization concept in data hiding. Combining these two techniques allows inserting the Unicode characters in randomized patterns with specific positions in the cover text to increase data hiding capacity with minimum effects on imperceptibility and security. Format-preserving encryption (FPE) is also used to encrypt a secret message without changing its size before the embedding processes. By comparing the proposed technique to already existing ones, the results demonstrate that it fulfils the cover file's capacity, imperceptibility, and security requirements.
The lung diseases classifying as one of the six incurable diseases in modern days are caused mostly by smoking and air pollution. Such causes the lung function damages, and results in malfunction of the exchange of carbon dioxide and oxygen in an alveolus, which the interest is augment with risk diseases of life prolongation. With this in the paper, we proposed a diagnosis method of lung diseases by applying parameters of voice analysis aiming at the getting the voice feature extraction. Firstly, we sampled the voice data from patients and normal persons in the same age and sex, and made two sample groups from them. Also, we conducted an analysis by applying the various parameters of voice analysis through the collected voice data. The relational significance between the patient and normal groups can be evaluated in terms of speech rates and intensity as a part of analized parameters. In conclusion, the patient group has shown slower speech rates and bigger intensity than the normal group. With this, we propose the method of voice feature extraction for lung diseases.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.