• Title/Summary/Keyword: Parking Detection

Search Result 87, Processing Time 0.031 seconds

Car Collision Verification System for the Ubiquitous Parking Management (유비쿼터스 주차관리를 위한 차량충돌 검증시스템)

  • Mateo, Romeo Mark A.;Yang, Hyun-Ho;Lee, Jae-Wan
    • Journal of Internet Computing and Services
    • /
    • v.12 no.5
    • /
    • pp.101-111
    • /
    • 2011
  • Most researches in WSN-based parking management system used wireless sensors to monitor the events in a car parking area. However, the problem of car collisions in car parks was not discussed by previous researches. The car position details over time are vital in analyzing a collision event. This paper proposes a collision verification method to detect and to analyze the collision event in the parking area, and then notifies car owners. The detection uses the information from motion sensors for comprehensive details of position and direction of a moving car, and the verification processes an object tracking technique with a fast OBB intersection test. The performance tests show that the location technique is more accurate with additional sensors and the OBB collision test is faster compared to a normal OBB intersection test.

Real-time Parking Lot Information Service Using Machine Learning-Based Object Detection (머신러닝 기반의 물체 인식을 이용한 실시간 주차장 정보 제공 서비스)

  • Seo, Gyu-seung;Seo, Young-tak;Baek, Chun-ki;Moon, Il-young
    • Journal of Practical Engineering Education
    • /
    • v.13 no.3
    • /
    • pp.491-496
    • /
    • 2021
  • In this thesis, we intend to use CCTVs installed in existing parking lots to understand the current status of parking lots and provide real-time information to users through Android applications. It describes how to set the ROI in the parking area using YOLO V3 and how to provide the number of vacancies that change in real time through the set ROI, and describes how to link CCTV-server-user using IMAGE ZMQ and FIREBASE. The user can know the real-time situation of the parking lot near the destination before arriving through the application and can come up with various measures accordingly.

Development of Control System for Autonomous Parallel Parking (자율적 평행주차 제어시스템의 개발)

  • 손민혁;부광석;송정훈;김흥섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.176-182
    • /
    • 2003
  • The researches for autonomous vehicle have been implemented in many studies, but most studies were confined to the lane fol1owing and changing. This paper addresses a problem of autonomous lane following parking a nonholonomic vehicle. The algorithm for image processing by the hough transform and controlling a steering angle and speed to park a nonholonomic vehicle is developed. The developed system which integrated the control algorithm for parking and vision algorithm for line traction tested with RC car and verified by the performance of the detection of parking area and the reactive parking without collisions.

Energy and Air Quality Benefits of DCV with Wireless Sensor Network in Underground Parking Lots

  • Cho, Hong-Jae;Jeong, Jae-Weon
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.2
    • /
    • pp.155-165
    • /
    • 2014
  • This study measured and compared the variation of ventilation rate and fan energy consumption according to various control strategies after installing wireless sensor-based pilot ventilation system in order to verify the applicability of demand-controlled ventilation (DCV) strategy that was efficient ventilation control strategy for underground parking lot. The underground parking lot pilot ventilation system controlled the ventilation rate by directly or indirectly tracking the traffic load in real-time after sensing data, using vehicle detection sensors and carbon monoxide (CO) and carbon dioxide ($CO_2$) sensor. The ventilation system has operated for 9 hours per a day. It responded real-time data every 10 minutes, providing ventilation rate in conformance with the input traffic load or contaminant level at that time. A ventilation rate of pilot ventilation system can be controlled at 8 levels. The reason is that a ventilation unit consists of 8 high-speed nozzle jet fans. This study proposed vehicle detection sensor based demand-controlled ventilation (VDS-DCV) strategy that would accurately trace direct traffic load and CO sensor based demand-controlled ventilation (CO-DCV) strategy that would indirectly estimate traffic load through the concentration of contaminants. In order to apply DCV strategy based on real-time traffic load, the minimum required ventilation rate per a single vehicle was applied. It was derived through the design ventilation rate and total parking capacity in the underground parking lot. This is because current ventilation standard established per unit floor area or unit volume of the space made it difficult to apply DCV strategy according to the real-time variation of traffic load. According to the results in this study, two DCV strategies in the underground parking lot are considered to be a good alternative approach that satisfies both energy saving and healthy indoor environment in comparison with the conventional control strategies.

Parking Space Recognition for Autonomous Valet Parking Using Height and Salient-Line Probability Maps

  • Han, Seung-Jun;Choi, Jeongdan
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1220-1230
    • /
    • 2015
  • An autonomous valet parking (AVP) system is designed to locate a vacant parking space and park the vehicle in which it resides on behalf of the driver, once the driver has left the vehicle. In addition, the AVP is able to direct the vehicle to a location desired by the driver when requested. In this paper, for an AVP system, we introduce technology to recognize a parking space using image sensors. The proposed technology is mainly divided into three parts. First, spatial analysis is carried out using a height map that is based on dense motion stereo. Second, modelling of road markings is conducted using a probability map with a new salient-line feature extractor. Finally, parking space recognition is based on a Bayesian classifier. The experimental results show an execution time of up to 10 ms and a recognition rate of over 99%. Also, the performance and properties of the proposed technology were evaluated with a variety of data. Our algorithms, which are part of the proposed technology, are expected to apply to various research areas regarding autonomous vehicles, such as map generation, road marking recognition, localization, and environment recognition.

A study on remote monitoring system for tower Parking facility (엘리베이터식 주차설비 원격감시시스템 구현)

  • Lee, W.T.;Lee, J.J.;Kim, K.H.;Cha, J.S.;Jeong, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3206-3208
    • /
    • 1999
  • This paper describes the remote fault monitoring system for tower parking facilities. This system consists of central station, remote monitoring equipments and communication equipments. The central station is developed under client-server architecture which composed a DB server, a fault detection client, a status collection client and a A/S client. And the remote monitoring systems are connected to central station by LAN using RAS(Remote Access Service) which is constructed PSTN(Public Switched Telephone Network). This system offers real-time fault detection and status data acquisition of tower parking system.

  • PDF

PARKING GUIDE AND MANAGEMENT SYSTEM WITH RFID AND WIRELESS SENSOR NETWORK

  • Gue Hun Kim;Seung Yong Lee;Joong Hyun Choi;Youngmi Kwon
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1278-1282
    • /
    • 2009
  • In apartment type of housing, if resident's vehicle is registered in central control office and RFID TAG is issued, identification can be recognized from the time of entrance into parking lot and intelligent parking guide system can be activated based on the residents' profile. Parking Guide System leads a vehicle to the available parking space which is closest to the entrance gate of the vehicle's owner. And when residents forget where they parked their cars, they can query to the Parking Guide and Management System and get responses about the location. For the correct operation of this system, it is necessary to find out where the residents' cars have parked in real time and which lot is available for parking of other cars. RFID is very fancy solution for this system. RFID reader gathers the ID information in RFID TAGs in parked cars and updates the DB up to date. But, when non-residents' cars are parked inside apartment, RFID reader cannot identify them nor know the exact empty/occupied status of parking spaces because they don't react to RFID reader's query. So for the exact detection of empty/occupied status, we suggest the combined use of ultrasonic sensors and RFID. We designed a tree topology with intermediate data aggregators. The depth of tree is normally more than 3 from root (central office) to leaves (individual parking lots). The depth of 2 in tree topology brings about the bottleneck in communication and maintenance. We also designed the information fields used in RFID networks and Sensor Networks.

  • PDF

Improved Crash Detection Algorithm for Vehicle Crash Detection

  • An, Byoungman;Kim, YoungSeop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.93-99
    • /
    • 2020
  • A majority of car crash is affected by careless driving that causes extensive economic and social costs, as well as injuries and fatalities. Thus, the research of precise crash detection systems is very significant issues in automotive safety. A lot of crash detection algorithms have been developed, but the coverage of these algorithms has been limited to few scenarios. Road scenes and situations need to be considered in order to expand the scope of a collision detection system to include a variety of collision modes. The proposed algorithm effectively handles the x, y, and z axes of the sensor, while considering time and suggests a method suitable for various real worlds. To reduce nuisance and false crash detection events, the algorithm discriminated between driving mode and parking mode. The performance of the suggested algorithm was evaluated under various scenarios, and it successfully discriminated between driving and parking modes, and it adjusted crash detection events depending on the real scenario. The proposed algorithm is expected to efficiently manage the space and lifespan of the storage device by allowing the vehicle's black box system to store only necessary crash event's videos.

A vehicle detection and tracking algorithm for supervision of illegal parking (불법 주정차 차량 단속을 위한 차량 검지 및 추적 기법)

  • Kim, Seung-Kyun;Kim, Hyo-Kak;Zhang, Dongni;Park, Sang-Hee;Ko, Sung-Jea
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.232-240
    • /
    • 2009
  • This paper presents a robust vehicle detection and tracking algorithm for supervision of illegal parking. The proposed algorithm is composed of four parts. First, a vehicle detection algorithm is proposed using the improved codebook object detection algorithm to segment moving vehicles from the input sequence. Second, a preprocessing technique using the geometric characteristics of vehicles is employed to exclude non-vehicle objects. Then, the detected vehicles are tracked by an object tracker which incorporates histogram tracking method with Kalman filter. To make the tracking results more accurate, histogram tracking results are used as measurement data for Kalman filter. Finally, Real Stop Counter (RSC) is introduced for trustworthy and accurate performance of the stopped vehicle detection. Experimental results show that the proposed algorithm can track multiple vehicles simultaneously and detect stopped vehicles successfully in the complicated street environment.

  • PDF

Fault Tolerant Control of Sensor Fault of EPB System (EPB 시스템의 센서 고장 허용 제어 기법)

  • Lee, Won-Goo;Lee, Young-Ok;Jang, Min-Seok;Lee, Choong-Woo;Chung, Chung-Choo;Chung, Han-Byul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.8-17
    • /
    • 2010
  • In this paper, a fault tolerant control against sensor faults of electric parking brake (EPB) is proposed. Fault tolerant control method of EPB system is strongly demanded since sensor faults can endanger a driver's safety. In this paper, a clamp force estimation method is presented using motor's armature current and angular velocity. Clamp force estimation method is applied for fault detection method with parity equations. The goal of the detection method is to detect and identify faults in encoder, current sensor, force sensor, and parking cable. And a switching logic for fault tolerant control against the three sensor faults is suggested. Experimental results show that the proposed force estimation method satisfies the specifications of EPB system. The effectiveness of the fault detection method is validated with experimental results. Although a single sensor fault happens, EPB system with the proposed fault detection method does not develop into a failure on subsystem or system level.