• 제목/요약/키워드: Parametric studies

검색결과 1,218건 처리시간 0.026초

Flexural analysis of transverse joints of prefabricated T-girder bridge superstructure

  • Kye, Seungkyung;Jung, Hyung-Jo;Park, Sun-Kyu
    • Structural Engineering and Mechanics
    • /
    • 제77권1호
    • /
    • pp.89-102
    • /
    • 2021
  • Rapid construction of prefabricated bridges requires minimizing the field work of precast members and ensuring structural stability and constructability. In this study, we conducted experimental and analytical investigations of transverse joints of prefabricated T-girder bridge superstructures to verify the flexural performance and serviceability. In addition, we conducted parametric studies to identify the joint parameters. The results showed that both the segmented and continuous specimens satisfied the ultimate flexural strength criterion, and the segmented specimen exhibited unified behavior, with the flexural strength corresponding to that of the continuous specimen. The segmented specimens exhibited elastic behavior under service load conditions, and the maximum crack width satisfied the acceptance criteria. The reliability of the finite element model of the joint was verified, and parametric analysis of the convexity of the joint section and the compressive strength of the filler concrete showed that the minimum deflection and crack width occurred at a specific angle. As the strength of the filler concrete increased, the deflection and crack width decreased. However, we confirmed that the reduction in the crack width was hardly observed above a specific strength. Therefore, a design suitable for prefabricated bridges and accelerated construction can be achieved by improving the joint specifications based on the required criteria.

Analytical and numerical investigation of the cyclic behavior of angled U-shape damper

  • Kambiz Cheraghi;Mehrzad TahamouliRoudsari
    • Steel and Composite Structures
    • /
    • 제51권3호
    • /
    • pp.325-335
    • /
    • 2024
  • Yielding dampers exhibit varying cyclic behavior based on their geometry. These dampers not only increase the energy dissipation of the structure but also increase the strength and stiffness of the structure. In this study, parametric investigations were carried out to explore the impact of angled U-shape damper (AUSD) dimensions on its cyclic behavior. Initially, the numerical model was calibrated using the experimental specimen. Subsequently, analytical equations were presented to calculate the yield strength and elastic stiffness, which agreed with the experimental results. The outcomes of the parametric studies encompassed ultimate strength, effective stiffness, energy dissipation, and equivalent viscous damper ratio (EVDR). These output parameters were compared with similar dampers. Also, the magnitude of the effect of damper dimensions on the results was investigated. The results of parametric studies showed that the yield strength is independent of the damper width. The length and thickness of the damper have the greatest effect on the elastic stiffness. Reducing length and width resulted in increased energy dissipation, effective stiffness, and ultimate strength. Damper width had a more significant effect on EVDR than its length. On average, every 5 mm increase in damper thickness resulted in a 3.6 times increase in energy dissipation, 3 times the effective stiffness, and 3 times the ultimate strength of the model. Every 15 mm reduction in damper width and length increased energy dissipation by 14% and 24%, respectively.

Application of Cox and Parametric Survival Models to Assess Social Determinants of Health Affecting Three-Year Survival of Breast Cancer Patients

  • Mohseny, Maryam;Amanpour, Farzaneh;Mosavi-Jarrahi, Alireza;Jafari, Hossein;Moradi-Joo, Mohammad;Monfared, Esmat Davoudi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권sup3호
    • /
    • pp.311-316
    • /
    • 2016
  • Breast cancer is one of the most common causes of cancer mortality in Iran. Social determinants of health are among the key factors affecting the pathogenesis of diseases. This cross-sectional study aimed to determine the social determinants of breast cancer survival time with parametric and semi-parametric regression models. It was conducted on male and female patients diagnosed with breast cancer presenting to the Cancer Research Center of Shohada-E-Tajrish Hospital from 2006 to 2010. The Cox proportional hazard model and parametric models including the Weibull, log normal and log-logistic models were applied to determine the social determinants of survival time of breast cancer patients. The Akaike information criterion (AIC) was used to assess the best fit. Statistical analysis was performed with STATA (version 11) software. This study was performed on 797 breast cancer patients, aged 25-93 years with a mean age of 54.7 (${\pm}11.9$) years. In both semi-parametric and parametric models, the three-year survival was related to level of education and municipal district of residence (P<0.05). The AIC suggested that log normal distribution was the best fit for the three-year survival time of breast cancer patients. Social determinants of health such as level of education and municipal district of residence affect the survival of breast cancer cases. Future studies must focus on the effect of childhood social class on the survival times of cancers, which have hitherto only been paid limited attention.

열차하중 측정에 관한 매개변수 연구 (Parametric Study about Measuring Train Loads)

  • 이소진;오지택;박옥정
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.1148-1154
    • /
    • 2004
  • Parametric studies are executed by numerical method varying then number of strain gauges, rail section and distance of sleeper from which the followings are obtained. Wheel forces or lateral forces are measured by connecting eight strain gauges on rail to single Wheatstone bridge. The method eliminates the influence of interaction and measured stability. Strain gauges are fastened on the neutral axis of the rail so as not to be influenced by sleeper.

  • PDF

Analysis of restrained steel beams subjected to heating and cooling Part II: Validation and parametric studies

  • Guo, Shi-Xiong;Li, Guo-Qiang
    • Steel and Composite Structures
    • /
    • 제8권1호
    • /
    • pp.19-34
    • /
    • 2008
  • This paper presents the results of a validation and parametric study for the theory presented in the companion paper. The parameters investigated include the stiffness of axial and rotational restraints, load ratio, depth-span ratio of the beam, the yield strength of steel, load type and the temperature distribution in the crosssection of the beam.

A Parametric Study of Displacement Measurements Using Digital Image Correlation Method

  • Ha, Kuen-Dong
    • Journal of Mechanical Science and Technology
    • /
    • 제14권5호
    • /
    • pp.518-529
    • /
    • 2000
  • A detailed and thorough parametric study of digital image correlation method is presented. A theoretical background and development of the method were introduced and the effects of various parameters on the determination of displacement outputs from the raw original and deformed image information were examined. Use of the normalized correlation coefficient, the use of 20 to 40 pixels for a searching window side, 6 variables searching, bi-cubic spline sub pixel interpolations and the use of coarse-fine search are some of the key choices among the results of parametric studies. The displacement outputs can be further processed with two dimensional curve fitting for the data noise reduction as well as displacement gradient calculation.

  • PDF

Dynamic Stability of Liquid in a Spherical Tank Covered with Membrane under Vertical Harmonic Excitation

  • Chiba, Masakatsu;Murase, Ryo;Nambu, Yohsuke;Komatsu, Keiji
    • International Journal of Aerospace System Engineering
    • /
    • 제2권2호
    • /
    • pp.34-39
    • /
    • 2015
  • Experimental studies were conducted on the liquid sloshing characteristics in a spherical tank covered with a flexible membrane. A spherical acrylic tank with 145.2 mm in radius was used as a test tank, and it was half-filled with water. Silicon membranes with 0.2 mm thickness were used as a test membrane with plane or hemispherical types. The test tank was harmonically excited in a vertical direction by an electro-dynamic exciter. In this case, a parametric instability vibration comes up when the excitation frequency is twice the natural frequency. Parametric instability regions of natural modes were measured for three cases, i.e. liquid surface is free, covered with plane membrane and hemi-spherical membrane.

접속부의 강성완화를 위한 Approach zone의 매개분석 (Approach zone of parametric analysis for hardness mitigation of connection)

  • 손지현;최진유;오지택;황원섭
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.558-564
    • /
    • 2006
  • When vehicles pass the connection between the bridge and earthwork, the difference of both sections' stiffness produces an increasing wheelload. As a consequence, it results in the excessive vibration of vehicles and the damage of bearing system. In general, steel plate girder railway bridges without ballast track have larger stiffness than the bridge with ballast, and produces larger impulse on the bridge superstructure. Thus, it is necessary to reduce the differences of both stiffness. This study presents parametric studies on the behavior of plate girder bridges and their tracks by means of various stiffnesses and the length of approach zone. The results of numerical study showed that the smaller the stiffness of both sides and the longer the length of approach zone, the variation of wheelload becomes smaller. Hence, it gives less burden into the plate girder bridges and their tracks. It is expected that the results of parametric study can be used as a preliminary data for the determination of economical length on the approach zone and the stiffness of both sides.

  • PDF

Resonant Parametric Perturbation Method to Control Chaos in Current Mode Controlled DC-DC Buck-Boost Converter

  • Kavitha, Anbukumar;Uma, Govindarajan
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권1호
    • /
    • pp.171-178
    • /
    • 2010
  • Resonant parametric perturbation (RPP) method is an effective non-feedback method for controlling chaos. In this paper, the above method is applied for the current programmed buck-boost dc-dc converter which exhibits chaotic for wide parameter variations. The different possible operating regimes leading to chaotic operation of the current mode controlled buck-boost converter is discussed and the control of chaos by RPP method is demonstrated through computer simulations and experimental studies. The converter is stabilized to period 1 operation practically.

차량용 에어컨의 성능에 미치는 인자에 관한 연구 (Parametric Study on Performance of an Automobile Air Conditioner)

  • 박윤철;권기린
    • 동력기계공학회지
    • /
    • 제6권4호
    • /
    • pp.16-22
    • /
    • 2002
  • This study was conducted to find performance evaluation method for automobile air conditioner. Experimental facilities were constructed to simulate wide range of operating condition for the automobile air conditioner. Compressor speed was controled by variable speed electric motor and the power was measured through torque transducer and tachometer was used to measure compressor speed. Parametric studies were conducted in this study, to figure out effect of environment variables on the performance of the automobile air conditioner. The environmental variables are inlet air temperature, relative humidity and air flow rate for the evaporator and inlet air temperature and air flow rate for the condenser. Compressor speed is also changed. The results of this study shows that air flow rate of the evaporator is more sensitive to the performance of the automobile air conditioner than the other variables. However relative humidity of the inlet air of the evaporator strongly affects capacity rather that COP.

  • PDF