• 제목/요약/키워드: Parametric Study

검색결과 3,721건 처리시간 0.035초

다중-익형의 공력 특성에 대한 파라미터 연구 (Parametric Study of Multi-Element Airfoils' Aerodynamic Characteristics)

  • 박민정;김병수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 춘계 학술대회논문집
    • /
    • pp.88-93
    • /
    • 2002
  • In the present research, a parametric study of aerodynamic characteristics for multi-element airfoils is performed. The major geometric parameters of interest are the gap distance between airfoils and relative deflection angle of slat/flap. The present results are mainly obtained by using inviscid flow calculation, and the aerodynamic characteristics are focused on the surface pressure distribution and the lifts. The results of the present research may be used as not only qualitative data but also quantitative data for small angle of attack flows, where the viscous effect does not play major role in terms of surface pressure distribution and lifts. A further research in this subject including viscous calculation and more geometric parameters is to be performed in the future.

  • PDF

A parametric study of optimum tall piers for railway bridge viaducts

  • Martinez-Martin, Francisco J.;Gonzalez-Vidosa, Fernando;Hospitaler, Antonio;Yepes, Victor
    • Structural Engineering and Mechanics
    • /
    • 제45권6호
    • /
    • pp.723-740
    • /
    • 2013
  • This paper presents a parametric study of reinforced concrete bridge tall piers with hollow, rectangular sections. Such piers are typically used in railway construction of prestressed concrete viaducts. Twenty one different piers have been studied with seven column heights of 40, 50, 60, 70, 80, 90 and 100 m and three types of 10-span continuous viaducts, whose main span lengths are 40, 50 and 60 m. The piers studied are intermediate columns placed in the middle of the viaducts. The total number of optimization design variables varies from 139 for piers with column height of 40 m to 307 for piers with column height of 100 m. Further, the results presented are of much value for the preliminary design of the piers of prestressed concrete viaducts of high speed railway lines.

Parametric study for buildings with combined displacement-dependent and velocity-dependent energy dissipation devices

  • Pong, W.S.;Tsai, C.S.;Chen, Ching-Shyang;Chen, Kuei-Chi
    • Structural Engineering and Mechanics
    • /
    • 제14권1호
    • /
    • pp.85-98
    • /
    • 2002
  • The use of supplemental damping to dissipate seismic energy is one of the most economical and effective ways to mitigate the effects of earthquakes on structures. Both displacement-dependent and velocity-dependent devices dissipate earthquake-induced energy effectively. Combining displacement-dependent and velocity-dependent devices for seismic mitigation of structures minimizes the shortcomings of individual dampers, and is the most economical solution for seismic mitigation. However, there are few publications related to the optimum distributions of combined devices in a multiple-bay frame building. In this paper, the effectiveness of a building consisting of multiple bags equipped with combined displacement-dependent and velocity-dependent devices is investigated. A four-story building with six bays was selected as an example to examine the efficiency of the proposed combination methods. The parametric study shows that appropriate arrangements of different kinds of devices make the devices more efficient and economical.

Seismic interaction of flexural ductility and shear capacity in reinforced concrete columns

  • Howser, Rachel;Laskar, A.;Mo, Y.L.
    • Structural Engineering and Mechanics
    • /
    • 제35권5호
    • /
    • pp.593-616
    • /
    • 2010
  • The seismic performance of reinforced concrete (RC) bridge columns is a significant issue because the interaction of flexural ductility and shear capacity of such columns with varied amounts of lateral reinforcement is not well established. Several relationships between flexural ductility and shear capacity have been proposed by various researchers in the past. In this paper, a parametric study on RC bridge columns is conducted using a nonlinear finite element program, "Simulation of Concrete Structures (SCS)", developed at the University of Houston. SCS has been previously used to predict the seismic behavior of such columns. The predicted results were compared with the test results obtained from experiments available in literature. Based on the results of the parametric study performed in this paper, a set of new relationships between flexural ductility and shear capacity of RC columns is proposed for seismic design.

콘크리트 벽식구조의 취약도 곡선에 대한 변수 연구 (Parametric Study on Fragility Curves of Concrete Wall Structures)

  • 김효진;박홍근;이영욱
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.101-104
    • /
    • 2006
  • In the past study, the fragility curve for the evaluation of earthquake resistance and earthquake-related damage of concrete bearing wall structures were studied. The fragility curve represents the probability of being in or exceeding a given damage state such as Slight, Moderate, Extensive or Complete structural damage state, and is defined as a cumulative lognormal distribution. Each fragility curve is characterized by median and lognormal standard deviation values. We performed parametric pushover analysis for typical 12 and 24 stories apartment buildings. Based on the results, the fragility curves of concrete wall structures were standardized. Using the fragility curve, engineers can directly evaluate the probability of a damage state to a spectral displacement of interest.

  • PDF

Effect of Guide Vane on the Performance of Impulse Turbine for Wave Energy Conversion

  • HYUN BEOM-SOO;MOON JAE-SEUNG;HONG SEOK-WON
    • 한국해양공학회지
    • /
    • 제18권6호
    • /
    • pp.1-7
    • /
    • 2004
  • This paper deals with the performance analysis of the impulse turbine for a owe type wave energy conversion device. Numerical analysis was performed using the commercially-available software FLUENT. This parametric study includes variation of the setting angle of the guide vane. Since parametric study at various flow coefficients requires a tremendous amount of computing time, two-dimensional cascade flow approximation was employed to determine the optimum principal particulars in a rather simple manner. A Full three-dimensional calculation was also performed for several cases to confirm the validity of the two-dimensional approach. Results were compared to other experimental data, such as Setoguchi et al. (2001)'s extensive set of data, and found that the usefulness of 2-D analysis was well demonstrated. The advantages of each method were also evaluated.

Parametric Study of Offshore Pipeline Wall Thickness by DNV-OS-F101, 2010

  • Choi, Han-Suk;Yu, Su-Young;Kang, Dae-Hoon;Kang, Hyo-Dong
    • 한국해양공학회지
    • /
    • 제26권2호
    • /
    • pp.1-7
    • /
    • 2012
  • DNV-OS-F101 includes the concept development, design, construction, operation,and abandonment of offshore pipeline systems. The main objective of this offshore standard (OS) is to ensure that pipeline systems are safe during the installation and operational period. The pipeline design philosophy also includes public safety and environmental protection. The mechanical wall thickness design of a pipeline shall follow the design objectives and safety philosophy. This new design code includes a very sophisticated design procedure to ensure a safe pipeline, public safety, and environmental protection. This paper presents the results of a parametric study for the wall thickness design of offshore pipelines. A design matrix was developed to cover the many design factors of pipeline integrity, public safety, and environmental protection. Sensitivity analyses of the various parameters were carried out to identify the impacts on offshore pipeline design.

박판성형해석을 위한 자동 프리에지 제거에 관한 연구 (A Study on the Automatic Elimination of Free Edge for Sheet Metal Forming Analysis)

  • 유동진
    • 소성∙가공
    • /
    • 제13권7호
    • /
    • pp.614-622
    • /
    • 2004
  • A new approach for the automatic elimination of free edges in the finite element model for the analysis of sheet metal forming processes is presented. In general, the raw finite element model constructed from an automatic mesh generator is not well suited for the direct use in the downstream forming analysis due to the many free edges which requires tedious time consuming interactive graphic operations of the users. In the present study, a general method for the automatic elimination of free edges is proposed by introducing a CAD/CAE hybrid method. In the method a trimmed parametric surface is generated to fill the holes which are orginated from the free edges by using the one step elastic finite element analysis. In addition, mesh generation algorithm is suggested which can be used in the general trimmed surface. In order to verify the validity of the proposed method, various examples including actual automobile sheet metal parts are given and discussed.

유한요소해석을 통한 Steel-Al합금 SPR 접합공정 주요인자 분석 (Parametric Study of Steel-Al Alloy SPR Joint Process via Finite Element Analysis)

  • 김성호;박남수;송정한;노우람;박근영;배기현
    • 소성∙가공
    • /
    • 제29권6호
    • /
    • pp.301-306
    • /
    • 2020
  • The parametric study of Steel-Al alloy SPR joint process is based on the FE simulation described by Kim et al. [10], which was validated by comparing experimental and simulation results for two kinds of steel-Al alloy combinations according to the lower sheet thickness. To analyze the SPR joint process, the friction coefficient, the lower sheet thickness, and the rivet length were selected as the main parameters. Based on FE simulations, the effect of main parameters was investigated by measuring the interlock and the bottom thickness at the cross-sectional shape of the SPR joint. The results of simulation facilitate the design of SPR joint process in various metal combinations.

Stormwater Quality simulation with KNNR Method based on Depth function

  • Lee, Taesam;Park, Daeryong
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.557-557
    • /
    • 2015
  • To overcome main drawbacks of parametric models, k-nearest neighbor resampling (KNNR) is suggested for water quality analysis involving geographic information. However, with KNNR nonparametric model, Geographic information is not properly handled. In the current study, to manipulate geographic information properly, we introduce a depth function which is a novel statistical concept in the classical KNNR model for stormwater quality simulation. An application is presented for a case study of the total suspended solids throughout the entire United States. Total suspended solids concentration data of stormwater demonstrated that the proposed model significantly improves the simulation performance rather than the existing KNNR model.

  • PDF